
Mapping Strategies for the PERCS Architecture
Venkatesan T. Chakaravarthy, Monu Kedia,

Yogish Sabharwal
IBM Research - India

{vechakra,mokedia1,ysabharwal}@in.ibm.com

Naga Praveen Kumar Katta
Princeton University

nkatta@cs.princeton.edu

Ramakrishnan Rajamony,
Aruna Ramanan

IBM USA
{rajamony,arunar}@us.ibm.com

Abstract—The PERCS system was designed by IBM in re-
sponse to a DARPA challenge that called for a high-productivity
high-performance computing system. The IBM PERCS archi-
tecture is a two level direct network having low diameter and
high bisection bandwidth. Mapping and routing strategies play
an important role in the performance of applications on such a
topology. In this paper, we study mapping strategies for PERCS
architecture, that examine how to map tasks of a given job
on to the physical processing nodes. We develop and present
fundamental principles for designing good mapping strategies
that minimize congestion. This is achieved via a theoretical study
of some common communication patterns under both direct and
indirect routing mechanisms supported by the architecture.

I. INTRODUCTION

The PERCS supercomputer is the latest in a line of high
performance computing systems from IBM [1]. Previously
known as “POWER7-IH” [1] and commercialized as the Power
775 [2], this system can incorporate up to 64K Power7 proces-
sors with a high-radix, high-bisection-bandwidth interconnect
based on the IBM Hub Chip [3], [4]. The system is a direct
outcome of the similarly named PERCS project (Productive
Easy-to-use Reliable Computing System) that was initiated by
DARPA in 2002 with the goals of providing state-of-the-art
sequential performance as well as interconnect performance
exceeding the state-of-the-art by orders of magnitude. With
its integrated interconnect and storage, the PERCS system is
expected to provide high sustained performance on a broad
class of HPC workloads.

An important aspect of the PERCS architecture is the two-
level direct-connect topology provided by a Hub chip [4]. In
this setup, Hub chips (or nodes) are grouped in the form
of cliques (called supernodes) and these cliques are then
inter-connected. A total of 47 links out of each Hub chip
create an interconnect with no more than three hops required
to reach any other Hub. Furthermore, the denseness of this
interconnect yields high bisection bandwidths and makes the
system suitable for communication intensive workloads. The
PERCS topology is noteworthy in that the multiple links can
be setup between a pair of supernodes.

A fundamental issue in parallel systems is the mapping
of tasks of a given job to the processors based on the
communication pattern of the job and the characteristics of the
underlying topology. The mapping determines the congestion
on the network links and hence the performance of the applica-
tion. The mapping problem has been extensively studied with
respect to various communication topologies such as the torus,

hypercube and fat-tree interconnects (see, for example, [5], [6],
[7], [8], [9]). Prudent mapping not only results in improved
communication bandwidth but also less inter-job interference.

To the best of our knowledge, the work of Bhatale et al[10]
is the only prior study of the mapping problem on the PERCS
architecture. They consider a sample set of communication
patterns (2D 5-point stencil, 4D 9-point stencil, Multicast)
and developed heuristics to perform the mapping. The idea
was to divide the given job into blocks and partition the pro-
cessors into blocks (where each block consists of neighboring
processors); the job blocks are then mapped onto the processor
blocks in a random manner. Different heuristics were obtained
by changing the block size. They conducted an extensive
experimental evaluation to compare these heuristics.

Our contributions. The main contribution of this paper is
to initiate a systematic approach for designing good mapping
strategies for the PERCS architecture. Our aim is to develop
mapping strategies based on sound theoretical underpinnings
derived via a formal analysis of the system.

A complete study of the mapping problem for the PERCS
architecture would ideally cater to handling multiple jobs
executing simultaneously on the system; the jobs having po-
tentially different predominant communication patterns. How-
ever, this can be a challenging task given the fact that the
architecture is very recent and there is lack of principled
prior study on this architecture. Being an initial study, we
restrict the scope of this paper as follows: (i) we consider
only a single system-wide job; (ii) we only consider the
load on the links (link congestion), ignoring other protocol
overheads – this aids in focusing on the critical architectural
aspects; and (iii) we consider only two (but very contrasting)
communication patterns. We note that Bhatale et al.[10] also
consider only a single system-wide job and only a selected set
of communication patterns. We believe that the concepts and
theoretical principles developed here will guide in a complete
study of this problem.

Though our study has the above-mentioned limitations, we
consider a wide range of system configurations determined by
the following parameters:

• The system size (number of supernodes)
• The number of links connecting any pair of supernodes
• Two different routing schemes: (i) direct routing, where

data is sent over the direct link(s) connecting the su-
pernodes; (ii) indirect routing, where an intermediate
supernode is used as a bounce point for redirecting data

978-1-4673-2371-0/12/$31.00 ©2012 IEEE

in order to improve the load balance.

In comparison, we note that Bhatale et al.[10] consider only
two system sizes (64 supernodes and 304 supernodes) whereas
we consider a wider range system sizes.

An important aspect of the PERCS architecture is that the
number of links between pairs of supernodes can be varied.
This wealth of choice in system connectivity needs to be
carefully considered based on the needs of the workloads that
will be executed on the system. For randomized workloads
like those exemplified by the Graph500 [11] and RandomAc-
cess [12] benchmarks, high connectivity will be beneficial.
For many HPC workloads, a lower level of connectivity may
suffice. For instance, large classes of HPC workloads have
been shown to have fairly low-radix inter-task partnering
patterns [13]. For such workloads, choosing a topology with a
lower number of links between supernode pairs may result in
considerable cost savings. An important feature of our study
is that the number of links between a pair of supernodes is
taken as a parameter and can be varied. In comparison, prior
work allow only a single link between a pair of supernodes.

The two communication patterns that we study are:

• Halo (two-dimensional 5-point Stencil) [14]: Tasks are
arranged in the form of a 2-D grid and each task com-
municates with its north, east, south and west neighbors.

• Transpose [12]: Tasks are arranged in the form of a 2-D
grid and each task communicates with all the tasks in the
same row and column as that of the given task.

Note that these sample patterns are contrasting in nature.
While the communication pattern of Halo is sparse, that of
transpose is a fairly dense. Halo is indicative of the small-
partner-count patterns that dominate HPC workloads. Trans-
pose is indicative of the performance of workloads that use
spectral methods such as the FFT. We next highlight some of
the important contributions of our study with respect to each
of these patterns.

For the Halo pattern, Bhatale et al.[10] devised a mapping
heuristic based on random mapping of task blocks to processor
blocks (as mentioned earlier). We devise a deterministic strat-
egy to map the task blocks to the processor blocks based on
the theoretical properties of modulo-arithmetic, that removes
the randomness and provides up to a factor 2 improvement in
throughput under direct routing.

To the best of our knowledge, our work is the first to study
the transpose pattern for the PERCS architecture. We argue
that direct routing offers better throughput than indirect routing
for this pattern. This is in strong contrast to all the patterns
considered by Bhatale et al.[10] for which they experimentally
demonstrated that the indirect routing is superior. This shows
that there are communication patterns that benefit under direct
routing and therefore a study of the mapping problem would
be incomplete without considering direct routing.

We also present experimental evaluation of the various
mapping schemes using a simulator for computing throughput.
Our experiments confirm that the mapping based on mod-
arithmetic is superior to the random mapping schemes for the

Halo pattern under direct routing by a factor of up to two.
The experiments also validate that direct routing is better than
indirect routing for transpose while indirect routing is better
than direct routing for Halo.

Apart from PERCS, the concepts developed in this paper
are more broadly applicable to a larger class of topologies
categorized as multi-level direct networks with all-to-all con-
nections at each level. The Dragonfly topology [15] that was
introduced in 2008 articulates the technological reasons for
using high-radix routers while lowering the number of global
cables that criss-cross the system.

II. PERCS ARCHITECTURE

Our goal in this paper is to find a “good” mapping of tasks
to compute elements for a variety of communication patterns
and routing schemes. We lay the groundwork in this section
by describing the PERCS interconnection topology. While
discussing the topology and routing scheme, we simplify
certain details of the actual system in order to make the model
more understandable.

The basic unit of the PERCS network is a Quad Chip Mod-
ule or node which consists of four Power7 processors [16].
By virtue of being located in a tight package, the four Power7
chips are fully connected to each other by very high bandwidth
links operating at 48 GB/s/direction. In general, intra-QCM
communication is high enough to be considered “free” for the
purposes of this study. Eight nodes are physically co-located
in a drawer. The nodes in a drawer are connected in the form
of a clique using bidirectional copper LL-links (i.e., each pair
of nodes in a drawer is connected by a dedicated LL-link)
that provide 21 GB/s/direction of bandwidth. For ease of
exposition, we will assume that each node also has a self-loop
LL-link resulting in a node having eight LL-links connecting
it to itself and the other nodes within the drawer.

Four drawers combine to form a supernode with each pair
of nodes in different drawers connected using a dedicated
bidirectional optical LR-link operating at 5 GB/s/direction.
Every node has twenty-four LR links that connect it to each
of the twenty-four nodes in the other three drawers.

A supernode thus consists of a clique of thirty-two nodes
connected by two type of links: intra-drawer LL-links operat-
ing at 21 GB/s/direction and inter-drawer LR-links operating
at 5 GB/s/direction. In the rest of the paper, we drop the
designation “/direction” noting that all bandwidths are treated
as the bandwidth per direction. Figure 1(a) highlights one
exemplar LL and LR link in a supernode. We shall use the term
L to denote both LL and LR-links. Multiple supernodes are in
turn connected via bidirectional D-links. Each D link operates
at 10 GB/s with the system design permitting multiple D-links
between pairs of supernodes.

We shall use the term ns to denote the number of supernodes
in the system and the term nd to denote the number of D-
links between pairs of supernode. The tuple (ns, nd) specifies
a system. For instance, a (32, 4) system consists of 32 supern-
odes with each pair of supernodes being connected via four
D-links. The implementation requires that nd must divide 32,

the number of nodes in a supernode yielding systems with six
different nd values: {1, 2, 4, 8, 16, 32}.

The value of nd determines the D-link wiring across su-
pernodes. Nodes within each supernode are divided into nd

buckets, with each bucket having 32/nd nodes. A D-link
connects each bucket to the corresponding bucket in every
other supernode – therefore each bucket must have ns D-links
originating from it connecting it to every supernode in the
system (similar to our treatment of the LL links, we assume
a self-loop D link for ease of exposition). Since a bucket may
have fewer nodes than are in a supernode, a node may be
attached to multiple D links. We call this the ndD-topology
and next describe a template that specifies where these ns D-
links connect. Let W be the number of nodes in a bucket.
Then, the jth bucket (where 0 ≤ j < nd) consists of nodes
numbered {jW, 1 + jW, . . . , (W − 1) + jW}. Each bucket
has ns D-links connecting it to every supernode in the system.
Within this bucket, the D-link connecting to supernode b will
originate from the node v numbered jW + (b mod W). We
refer to this as the supernode b being incident on the node v.
Thus, each supernode will be incident on nd nodes.

Illustration: Figure 1(b) illustrates the D-link connectivity
for a 32-supernode system with two D-links between every
pair of supernodes. This is an (ns = 32, nd = 2) system that
uses a 2D-topology. In this system, supernode 1 is incident
on nodes {1, 17}. Since nd = 2, there are two buckets each
with sixteen nodes. Bucket 0 consists of nodes in the first
two drawers numbered {0, 1, . . . , 15}. Bucket 1 consists of the
remaining two drawers with nodes numbered {16, 17, . . . , 31}.
Thirty-two D links go from each bucket to the thirty-two
supernodes in the system. Every supernode uses this template.
Thus supernodes 0 and 16 are incident on node 0 in each
bucket while supernodes 2 and 18 are incident on node 2
in each bucket. The figure explicitly calls out the D-link
connectivity between supernode 2 on the left and supernode
11 on the right. Two D-links connect this pair of supernodes.
In bucket 0, the D-link is between node 11 of supernode 2
and node 2 of supernode 11. The same template is followed
in bucket 1, with a D-link between node 27 of supernode 2
(which is the same as node 11 in bucket 1) and node 18 of
supernode 11 (which is the same as node 2 in bucket 1).

As a second example, consider a (ns = 16, nd = 8) system.
This system will have eight buckets per supernode each with
four nodes. Bucket 0 will contain the four nodes in the first half
of the first drawer: {0, 1, 2, 3} while bucket 7 will consist of
the nodes in the second half of the last drawer: {28, 29, 30, 31}

Any node is indexed by a tuple ⟨a, u⟩, where a is the
supernode number (0 ≤ a ≤ ns − 1) and u is the node
number (0 ≤ u ≤ 31). For instance, ⟨11, 13⟩ will be node
13 in supernode 11.

We next define the notion of D-port utility factor, which is
useful in our analysis. The D-port utility factor h is defined to
be the average number of D-links originating from each node;
formally, we define h = ns/W . Equivalently h = nsnd/32.
For expositional ease, we only consider systems where h is an
integer in this paper. For instance, the 32-supernode system of

Figure 1(b) has h = 2 (i.e., two D-links originate and terminate
at every node). This terminology arises from the fact that nodes
are equipped with optical transceiver ports that accept the D-
links and h counts the number of D-ports used per node.

The Power 775 implements a maximum of 16 D-ports at
every node implying an h factor of at most 16. This means
that nsnd must be at most 512 capping the maximum system
size at 512 supernodes.

The design supports two routing methods for inter-
supernode communication. In the direct routing scheme, the D-
links directly connecting these supernodes are used to transfer
data. In the indirect routing scheme, an intermediate supernode
is used for redirecting data to the destination supernode. The
direct routing scheme employs one D traversal, while the
indirect routing scheme uses two D traversal. The advantage
with indirect routing is in its ability to offer better load
balancing [3], [1]. A formal description of these routing
schemes will be provided in subsequent sections.

III. PROBLEM STATEMENT

We now define the mapping problem precisely and introduce
different communication patterns studied in the paper.

Every supernode has 32 nodes, each containing four Power7
processors. We assume that each processor can execute a
compute task yielding 128 × ns tasks system-wide. The
communication employed by the tasks in a job constitutes a
communication pattern that can be visualized as a graph where
the vertices denote tasks and directed edges denote inter-task
communication. The problem we investigate here is to map
tasks to processors so as to maximize system throughput taking
both topology and routing into consideration.

Prior work has observed that a small number of low-radix
partnering patterns dominate most HPC workloads [13]. Our
analysis focuses on the following two patterns: Halo and
Transpose; it shows how task mapping can be improved for
high-radix interconnects such as that found in PERCS.

Throughput Analysis: For our analysis, we assume that
each task has a total of one unit of data to send to all of its
neighbors. In the case of Halo, the amount of data sent to the
neighbors is uniform. In the case of transpose, (1/2) unit of
is distributed uniformly among the tasks in the same row and
(1/2) unit is distributed uniformly among the tasks in the same
column. In the case of Halo, each task x will send (1/4) units
of data to each of its four neighbors; in the case of transpose
job consisting of 32 rows and 64 columns, each task x will
send (1/128) unit of data to each task on the same row and
(1/64) unit of data to each task on the same column.

Consider a job J and a function π mapping the tasks of
J to the physical Power7 processors. Data transfer between
task x and y takes place between the physical processors u =
π(x) and v = π(y). The specific routing choice (direct or
indirect) employed determines the set of paths over which the
data is sent and thence the amount of load placed on every
link in the paths. We then obtain the total load ℓ(e) on a
link e by calculating the load contributions from every pair of
communicating tasks that use that link.

(a) Supernode (b) D-link connectivity
Fig. 1. Illustration of supernode and D-link connectivity

Let LLL be the maximum of ℓ(e) over all the LL-links.
Similarly, let LLR and LD denote the maximum total load
over all the LR and D-links. Recall that the LL, LR and
D links have different bandwidths of 21, 5, and 10 GB/s
respectively. These bandwidth differences arise from the very
different cost, power, and capabilities that each transport
offers. Continuing our analysis, we normalize these numbers
by dividing LLL by 21, LLR by 5 and LD by 10. Let
t = max{LLL/21, LLR/5, LD/10}. The value t is a measure
of congestion in the system and a measure of the overall time
it will take for the job to complete execution. The value 1/t
provides the throughput per task. In other words, (1/t) is
maximum amount of data that every task can send so that
every LL, LR and D-link gets a total load of at most 21 GB/s,
5 GB/s and 10 GB/s respectively. If each task sends (1/t) GB
of data, then the whole communication will be completed in
one second. Since four tasks execute on each node, the value
(4/t) provides the throughput per node.

We define the throughput of the mapping π to be τ(π) =
(4/t) GB/s. We also define throughput with respect each type
of link: (i) τLL(π) = (1/LLL) × 4 × 21; (ii) τLR(π) =
(1/LLR) × 4 × 5; (iii) τD(π) = (1/LD) × 4 × 10. Notice
that τ(π) is the minimum over the above three quantities.

Mapping Problem: Given a specific job consisting of n =
128ns tasks and a specific routing scheme, the problem is to
devise a mapping π having high throughput τ(π).

IV. DIRECT ROUTING

We first describe the direct routing scheme. Then, we study
the mapping problem for the Halo and Transpose patterns.

A. Routing Scheme

We first describe intra-supernode routing, which is used for
communication between two nodes within the same supernode.
Two types of routing schemes are supported for this scenario.

• Single Hop: All the communication between any two
nodes is performed via the LL or LR link connecting
them. Figure 1(a) shows the single-hop route for com-
munication between nodes 1 and 4, as well as nodes 1
and 18.

• Striped: Communication between nodes u and v is
directed through one of the nodes in the same drawer
as u giving rise to LL-LL or LL-LR path. A message
from u to v is striped into multiple packets that are sent
over the above eight paths. If node u has 1 unit of data
to send, each path will receive (1/8) units of data.

To illustrate striped routing, first consider the case of intra-
drawer communication with node 0 sending data to node 1.
This transfer will be striped over eight paths of the form 0 →
x → 1, where any of the eight nodes ({0, 1, . . . , 7}) present
in the drawer can be used as the bounce point. Note that we
permit nodes 0 and 1 to also act as the bounce point; in this
case, we imagine that the LL self-loop at the node is utilized.
Next consider the case of inter-drawer communication with
node 0 sending data to node 8. These nodes are in different
drawers and we stripe it over eight paths of the form 0 →
x → 8, where the bounce point x can be any of the eight
nodes present in the first drawer ({0, 1, . . . , 7}). If the amount
of data is 1 unit, 1/8 units of the sent will be sent over each
path. As before, node 0 can itself also act as a bounce point.
We thus stripe intra-drawer communication over eight paths of
the form LL-LL and inter-drawer communication over eight
paths of the form LL-LR.

Striped routing adds more load on the LL links compared
to single-hop routing. However, it enables better link load
balancing by using more of the higher bandwidth LL links.
In the rest of the paper, we only consider striped routing for
intra-supernode communications.

We next describe inter-supernode communication under
direct routing when nodes u and v need to communicate but
are located in different supernodes. The destination supernode
in incident on the source supernode through nd D-links. Data
transfer between the nodes is striped over these nd links
through paths of the form L → D → L. If node u has 1
unit of data to send, each path will receive 1/nd units of data.

For an illustration, refer to Figure 1 (b) and consider
node 1 in supernode 2 needing to send data to node 31 in
supernode 11. This communication will be striped over the
two D-links shown in the figure utilizing the following L-
D-L paths: (i) ⟨2, 1⟩ → ⟨2, 11⟩ → ⟨11, 2⟩ → ⟨11, 31⟩; (ii)
⟨2, 1⟩ → ⟨2, 27⟩ → ⟨11, 18⟩ → ⟨11, 31⟩.

B. Principles
In this section, we discuss some general principles that are

useful in designing good mapping strategies for a general
communication pattern J .

Developing a mapping strategy proceeds in two steps. In
the first step, we map each task to a supernode; in the
second step, we map the tasks to individual nodes within
the supernodes. Note that the D-links are used only for inter-
supernode communication causing the D-link throughput to be
determined solely by the first mapping. D links are the long
global cables in the system.

Our experience suggests that it is often difficult to optimize
on all the three types of throughputs. A useful rule of thumb
is to focus on D-link throughput while designing the first
mapping and consider LR-link and LL-link throughputs in
the second step. Decomposing the mapping problem in this
manner makes it tractable.

Let us now consider the first step of mapping tasks to
supernodes. We view the mapping as a process of coloring
of the vertices (i.e., tasks) in the communication graph using
the set of colors {0, 1, 2, . . . , ns−1}. We must ensure that all
the colors appear an equal number of times (128 times, since
each supernode has 128 processors). In order to obtain high
D-link throughput, the coloring should ensure two properties:

• Load Reduction: A color class must form a dense sub-
graph with as few outgoing edges as possible. Doing so
minimizes the total load contribution on the D-links.

• Load Distribution: For any pair of color classes, the
number of edges between the color classes must be
minimized. This way the load on the bundle of nd D-links
connecting any pair of supernodes will be minimized.
One way to achieve the above goal is to ensure that for
each color class, the neighbors of the tasks in the color
class are uniformly distributed across other color classes.

Let us now consider the second step of mapping tasks to
individual nodes. Consider an L-link going from a node u to
a node v. For inter-supernode communication, link e is used
both when u sends data to any supernode incident on v and
when v receives data from any supernode incident on u. So,
we must ensure that the eight tasks mapped to nodes u and
v do not have their neighbors concentrated on the above two
types of supernodes. Doing so reduces the load imposed on e
due to inter-supernode communication.

C. Mapping Strategies for Halo
In this section, we consider the Halo pattern. We first

discuss certain natural strategies and then present a scheme
whose design is based on the properties of modulo arithmetic.
We shall mainly focus on the D-link throughput. However,
we will ensure that LR-link and LL-link throughput are not
significantly compromised in the process.

Let number of processors n is given by n = 128ns, since
there are 128 processors in a supernodes; the number of tasks
in the job is also n. Consider the job as a P×Q grid consisting
of P rows and Q columns such that PQ = n = 128ns. With-
out loss of generality, assume that P ≤ Q. A simple strategy

for mapping any pattern is to map the tasks sequentially to the
processors. This can be considered as a default mapping: the
128ns processors are indexed sequentially and the task having
rank j is mapped to the processor having index j. Bhatale et
al. have proposed certain natural strategies that are better than
default mapping based on the idea of creating blocks [10]. We
present an overview of these strategies.

Blocking Strategies: Let α and β be numbers such that they
divide P and Q, respectively. The P ×Q grid is divided into
blocks of size α×β resulting in (P/α)×(Q/β) blocks. Bhatale
et. al. [10] obtain different mapping schemes by choosing
different values for α and β:

• Node blocking: α× β = 2× 2; fits in a node.
• Drawer blocking: α× β = 4× 8; fits in a drawer.
• Supernode blocking: α×β = 8× 16; fits in a supernode.

The next step is to map the tasks to processors which we
accomplish by dividing processors also into blocks: in the
case of drawer blocking, each drawer constitutes a processor
block; in the case of node and supernode blocking, each node
and each supernode become a block, resp. Processor and task
blocks are indexed in a canonical manner. Then the task blocks
are mapped to processor blocks in one of the two ways:

• Sequential: A task block having index j is mapped to
processor block having index j.

• Random: Task blocks are mapped to processor blocks in
a random manner.

Bhatale et al.[10] proposed the above schemes and presented
an experimental evaluation based on the BigSim simula-
tor [17]. Below, we present an theoretical analysis of the
throughput of these schemes. Based on the ideas discussed
here we develop an improved mapping strategy.

Blocking Strategies (An Informal Analysis): In the Halo
pattern, a block is a dense subgraph and so, creating blocks
reduces load on the different types of links. We analyze the
D-link throughput of the blocking schemes. Consider an α×β
block. With respect to the task grid, the number of edges going
out of the four sides this block is 2(α+β). Each of these edges
carry (1/4) units of data (since each task sends (1/4) units of
data to each of its four neighbors). Thus, the amount of data
going out of each block is (α + β)/2. Each supernode has
128/(αβ) blocks. If no two adjacent task blocks are mapped
to the same supernode, the data leaving each supernode is

128

αβ
× α+ β

2
=

64(α+ β)

αβ
. (1)

For the node-blocking, drawer-blocking and supernode-
blocking schemes, we see that the above quantity is 64, 24
and 12 units, respectively. Therefore, we note that supernode
blocking is superior in reducing the overall load on the D links.
On the outset, it seems using larger blocks (as in supernode
blocking) is better than using smaller blocks (as in node
blocking). However, in determining the final throughput, it is
important to consider the distribution of the load on the D
links. This is discussed next.

Supernode blocking analysis is straightforward. Recall that
in this case α = 8 and β = 16 Each supernode a contains

a single block whose four neighbors are mapped on to four
other distinct supernodes. The data sent from a to its northern
and southern neighbors is (β/4) = 4 units and the data to
sent to its eastern and western neighbors is (α/4) = 2 units.
The maximum amount of data sent from any supernode to any
other supernode is 4 units. Since there are nd D links between
any pair of supernodes, the maximum load imposed on any
D link is 4/nd units. The throughput with respect to D links
is therefore (nd/4) × 4 × 10 = 10nd GB/s. Notice that the
D link load in not well distributed, since from any supernode
data is sent only to the four neighboring supernodes causing
the D links to the other supernodes to not be utilized.

In the above discussion, we managed to derive the exact D-
link throughput for the supernode blocking scheme. Perform-
ing a similar calculation for the expected D-link throughput
of the node and drawer blocking schemes under random
mappings is difficult. However, we can make some qualitative
remarks on these schemes. We saw that compared to supernode
blocking, the node and drawer blocking schemes put more load
on the D links. However, the latter schemes distribute the load
more uniformly over the D links. This is because the block
sizes are smaller and so each supernode receives more number
of blocks. Consequently, for any supernode a, the number of
blocks adjacent to the blocks in a is higher. As a result, under
random mapping, these larger number of neighboring blocks
get more uniformly distributed over the other supernodes.
As an analogy, consider throwing balls (neighboring blocks)
randomly into bins (supernodes); the distribution gets more
uniform as the number of balls is increased. Another important
factor determining the overall throughput is the number of
supernodes ns. As the number of supernodes increase, each
supernode will receive lesser number of neighboring blocks
reducing the load on the D-links. Our experimental study
compares the performance of different blocking schemes –
we show there that the blocking schemes achieve a D link
throughput between 10nd and 20nd GB/s, with the throughput
increasing as the number of supernodes is increased.

These observations motivate an improved mapping scheme
called mod color Mapping.

Mod Color Mapping Scheme: Similar to the blocking
strategies discussed until now, the mod-coloring scheme is also
based on dividing the input grid into blocks. We first describe
the process of mapping tasks to supernodes. Let the input grid
be of size P×Q where PQ = n = 128ns. Consider any block
size α × β such that α and β divide P and Q, respectively.
Divide the input P ×Q grid into blocks of size α× β. Then
f = 128/(αβ) blocks must be mapped to each supernode.
These blocks can be visualized as points in a smaller grid of
size p× q, where p = P/α and q = Q/β. Next, imagine each
supernode to be a color and consider the set of supernodes
{0, 1, . . . , ns − 1} as a set of colors Then, carrying out a
block-to-supernode mapping can be viewed as the process of
coloring each point in the p × q grid with a color from the
above set. Each color appears f times in the smaller grid and
each color has four neighbors (east, west, north, south) in each
appearance. Each color has 4f neighbors over all appearances.

0 1 2 3 4 5 6 7
2 7 4 1 6 3 0 5
8 9 10 11 12 13 14 15
10 15 12 9 14 11 8 13
16 17 18 19 20 21 22 23
18 23 20 17 22 19 16 21
24 25 26 27 28 29 30 31
26 31 28 25 30 27 24 19

Fig. 2. An example perfect coloring

We say that a coloring scheme is perfect, iff for any color c, the
4f neighbors of c are all distinct. Figure 2 illustrated a perfect
coloring for the case of p = 8 and q = 8; the number colors
is 32 and f = 2; there are 32 colors each appearing exactly
twice. The neighbors of 21 are {20, 11, 22, 19, 16, 23, 18, 31},
which are all distinct. A process of enumeration can show that
the coloring is indeed perfect.

Assume now that we have constructed a perfect coloring
scheme. In terms of the blocks-to-supernode mapping π, this
means that for any supernode a, all the blocks in a put together
have at most one neighboring block in any other supernode.
This means that the amount of data sent from from a supernode
a to any supernode b is one of the following: (i) no data is
sent if they do not share a pair of neighboring blocks; (ii) the
data sent is (α/4) if the shared pair of blocks are neighbors
in the east-west direction; (iii) the data sent is (β/4) if the
shared pair of blocks are north-south neighbors.

Overall, the data sent from any supernode to any other
supernode is at most max{α/4, β/4}. It follows that the data
sent on any D link is atmost max{α, β}/(4nd). Therefore, for
any perfect coloring scheme, the D-link throughput is:

τD(π) =
4nd

max{α, β}
× 4× 10. (2)

One strategy for coloring the grid is to assign colors randomly
and this corresponds to the random block mapping strategies.

Equation 2 shows that the throughput obtained from a
perfect coloring scheme increases as the block size decreases.
Thus, while the Bhatale-inspired supernode-blocking is a
perfect coloring scheme, its use of a large block size of α = 8
and β = 16 results in a D-link throughput of 10nd GB/s.

In this context, our main technical result is a perfect coloring
scheme with a block size of α = β = 8. In this case, we
see that f = 2 (so that each supernode gets two blocks or
equivalently, each color appears exactly twice in the p×q grid).
The number of colors is k = ns = (pq)/2. The following
lemma establishes the coloring scheme claimed above.

Lemma 4.1: Let p be any multiple of four and q ≥ 8 be
any power of two and the number of colors be k = (pq)/2.
Then there exists a perfect coloring scheme for the p× q grid.

A proof sketch is provided below. A full proof is given
in the full version (available as arXiv report 1208.2849). The
proof uses a construction based on the properties of modulo
arithmetic. For our choice of the block size p is P/8 and q
is Q/8. In order to apply the lemma, we require that P is a
multiple of 32 and Q is a power of two at least 64. Suppose

the grid satisfies the above properties. Then Equation 2 shows
that we get a throughput of 20nd GB/s.

Remark: Observe that if we could design a perfect coloring
scheme with block size 4× 4, the D-link throughput obtained
will be 40nd GB/s. This as an interesting open problem.

Using the coloring scheme given by Lemma 4.1, we can
map the 8 × 8 blocks to supernodes. We now focus on
mapping the tasks within the blocks to individual nodes of
the supernodes. We divide the each block into 2 × 2 quads
and map the quads to the nodes of the supernode. In order to
guarantee a high throughput on the L-links, a careful mapping
of quads to nodes is necessary. We leave this for future work.
In this paper, we adopt a simple strategy of mapping quads to
nodes sequentially. Our experimental analysis shows that the
simple strategy works reasonably well.

To summarize, we presented the mod-color mapping scheme
and proved that it offers a D-link throughput of 20nd GB/s.
We have also showed that the new scheme offers a 2× im-
provement in D-link throughput over the supernode blocking
scheme. We later show that these observations persist in
our experimental evaluations with the mod-coloring scheme
outperforming other blocking schemes by as much as factor
of 2. For a P ×Q, the mod-color scheme does require that P
be a multiple of 32, and Q be a power of two with Q ≥ 64.
However, we believe that the framework developed here will
be useful not only in designing good strategies for general grid
sizes, but also in obtaining even higher throughputs.

Proof Sketch of Lemma 4.1: The proof uses the notion of
nice permutations. Let Ω be a set of q elements. For a per-
mutation σ over Ω and 0 ≤ i < q, let σ(i) denote the symbol
appearing in the ith position. Consider two permutations σ1

and σ2 over Ω. Let us view the two permutations as 2 × q
grid, where the first row is filled with σ1 and the second row
is filled with σ2. Let x be a symbol in Ω. The copy of x in the
first row has three neighbors: left, right and down. Similarly,
the copy of x in the second row has three neighbors: left, right
and up. We say that the two permutations are nice, if for any
symbol x all its six neighbors are distinct.

We claim that if q ≥ 8 and q is a power of two, then there
always a pair of nice permutations for Ω. The proof of claim
goes as follows. We take σ1 to be the identity permutation.
The permutation σ2 is defined as follows: for 0 ≤ i < q,
σ2(i) = (5i + 2) (mod q). It can be shown that σ1 and σ2

form a nice pair of permutations.
Now let us prove Lemma 4.1. We divide the set of (pq/2)

colors into (p/2) groups of size q/2 each. Let these groups
be g0, g1, . . . , g(p/2)−1 Then, for 0 ≤ i < (p/2), we color the
points on the rows 2i and 2i + 1 as follows: first we obtain
a pair of nice permutations σ1 and σ2 for gi; then we color
the points on the row 2i with the permutation gi and we color
the points on the row 2i+1 with the permutation σ2. We can
show that the coloring is perfect.

D. Mapping Strategies for Transpose

In this section, we study the problem of designing good
mapping strategies for the Transpose pattern under direct

routing. We first focus on the D-links.
Let the input job be a grid of size P × Q, where P is

the number of rows and Q is the number of columns, and
P×Q = n = 128ns is the total number of tasks. Any mapping
strategy π must divide the job in to ns groups each containing
128 tasks, and map a single group to each supernode. In order
to reduce the load on the D-links, it is important that the
groups must have high intra-group communication and low
inter-group communication; in other words, each group should
be a dense subgraph in the job communication graph. Recall
that in the case of Transpose, each task sends (1/(2Q) units of
data to all the tasks on its row and (1/(2P)) units of data to all
the tasks on its column. In terms of the communication graph,
each row forms a clique and each column forms a clique.
Thus, there are two good mapping strategies: (i) row-wise
mapping: map a set of rows to each supernode; (ii) column-
wise mapping: map a set of columns to each supernode.
Consider row-wise mapping Assume that Q ≤ 128 and that
Q is a power of two (so that Q divides 128). Then, we
map 128/Q rows to each supernode. Let us compute the D-
link throughput for the row-wise mapping. Let e be a D-link
going from a supernode a to some other supernode b. Any
task x sends (1/(2P)) units data to each task on its column
(including itself). The supernode b contains 128/Q rows and
from each row, one task is found on the same column a x.
So, amount of data sent by the task x to the supernode b is
(64/(PQ)). Since there are 128 tasks present in supernode
a, the amount of data sent from a to b is (128 × 64/(PQ)).
Since PQ = 128ns, we see that the amount of data is 64/ns.
All this data is striped on the nd D-links going from a to b.
Hence, the load on the D-link e is 64/nsnd. Therefore, the
D-link throughput of the row-wise mapping π is

τD(π) =
nsnd

64
× 4× 10 = 20h, (3)

(since h = nsnd/32). A similar calculation shows that the
D-link throughput of the column-wise mapping is also 20h.

A comparison of the Halo and Transpose pattern is note-
worthy. In Transpose, any task x sends (1/2) units of data
to the tasks in its row, all of which constitute intra-supernode
communication; the reaming (1/2) units is sent to tasks along
the column of x. Thus, at most (1/2) units data is sent to
other supernodes. The tasks found on the column of x are
equally distributed across the supernodes. As a result, each
task will send an equal amount of data every other supernode.
So, the load on the D-links is automatically balanced. Hence,
in contrast to Halo, we do not need sophisticated techniques
(such as mod-coloring) for obtaining load balancing in the
case of Transpose.

Both row-wise and column-wise strategies are equally good
with respect to D-link throughput. However, their L-link
throughput may be different although this happens only in
certain boundary conditions related to the grid sizes. This
motivates the design of a hybrid scheme where we choose
either row-mapping or column-mapping depending on the grid
size. The next step is to map tasks to individual nodes within

supernodes. For this we adopt a simple sequential mapping
strategy. It can be proved that the LR-link throughput is then
at least 80 GB/s and the LL-link throughput is at least 134
GB/s with the actual values depending on the grid size. The
overall throughput is then given by:

min{20h, 80} GB/s. (4)

Boundary cases and derivations are deferred to the full version.

V. MAPPING STRATEGIES FOR INDIRECT ROUTING

Indirect routing uses an intermediary supernode different
from the source and destination supernodes as a “bounce”
point. We describe indirect routing in detail and study the
mapping problem for the Halo and Transpose patterns.

A. Routing Scheme

Inter-supernode communication uses an intermediate su-
pernode as a bounce point that redirects the communication to
the destination supernode. There are a total of ns×nd D-links
from the source supernode. Each such D-link defines a path as
follows. Pick any D-link e that connects the source supernode
to an intermediate supernode x. Consider the bucket on the
intermediate supernode where D-link e terminates. The path
is completed by using the unique D-link originating from the
same bucket to travel to the destination supernode.

For an illustration, refer to Figure 3 that shows one of the
nsnd indirect paths. This path is defined by the D-link D1

from supernode a to some intermediate supernode c. Link D1

originates on node w and terminates on node x in supernode
c. Since w is in bucket 0, x is also in bucket 0. The system
wiring dictates that there be a D-link originating from bucket
0 of supernode c going to supernode b; in the illustration, this
link originates from node y and lands on node z in supernode
b. Thus, the indirect path defined by D1 is w → x → y → z.
Notice that one could have used the D-link originating from
bucket 1 (instead of bucket 0) of intermediate supernode c to
reach supernode b. However, such a path is not supported by
the routing software used in the system. For the second D-hop,
the path is constrained to use the unique D-link originating
from the same bucket where the first D-hop D1 lands.

For intra-supernode communication we use the same striped
routing method as in Direct routing (See Section IV-A).

B. Principles

We now discuss some general principles that are useful in
designing good mapping strategies with indirect routing.

A crucial difference between direct and indirect routing
schemes is that the latter tends to balance load on the D-
links. Consider a node u sending data to node v in a different
supernode. In the case of direct routing, this data will be sent
over the bundle of nd D-links connecting the two supernodes.
In the case of indirect routing, the data will be striped over
all the nsnd D-links going out of a. As a result the load is
well balanced on the D-links making it easier to design good
indirect routing mapping strategies.

Fig. 3. Indirect routing

Let δmax be the maximum amount of data sent from any su-
pernode to any other supernode (where the maximum is taken
over all pairs of supernodes). Then, the D-link throughput will
be δmax/(nsnd). In order to obtain high D-link throughput
under indirect routing, it is sufficient to simply minimize the
load out of a supernode, or δmax.

Now let us consider the case of L-links. Consider an L-link
in supernode a from node u to node v. As before, consider
inter-supernode communication using paths of the form L-D-
L-D-L. Link e will be used as the first L-hop whenever u
sends data to any other supernode and the data will be striped
uniformly over the 32 L-links originating from u. Similarly,
link e will be used as the last L-hop whenever u receives
data from any other supernode and the data will be striped
uniformly over the 32 L-links terminating at u. So, the load
on e due to the first and last L-hops are determined purely by
the sum of the amount of sent by u and received by v to/from
other supernodes. A good mapping strategy should minimize
this sum over all the L-links. Thus, the main consideration is
to reduce the amount of data sent by individual nodes to other
supernodes. However, the middle L-hop poses an interesting
issue which we discuss in the context of Halo pattern.

C. Mapping Strategies for the Halo Pattern

In this section, we discuss mapping strategies for the Halo
communication pattern, under indirect routing. We also show
that indirect routing is better than direct routing for the Halo
pattern. Bhatale et. al. [10] applied the blocking schemes for
the Halo pattern (c.f. Section IV-C) also under the indirect
routing scheme. We shall argue that the supernode blocking
scheme under random mapping is a good strategy in this
scenario.

As our principles (Section V-B) suggest, it is sufficient
for the mapping strategy to reduce the D-link loads under
indirect routing scheme. In Section IV-C, we also observed
that blocking is beneficial for load reduction for Halo.

Consider a Halo job grid of size P × Q, where PQ =
n = 128ns is the number of tasks. Let us fix a block size of

α×β. The data sent out of any supernode is 64(α+β)/(αβ)
(see Equation 1). We wish to ensure that αβ divides 128 so
that each supernode gets an integral number of blocks. Under
this condition the block size minimizing the amount of data
is 8× 16. So, we see that the block size of α = 8 and β = 16
is the best choice (i.e., supernode blocking). We see that each
supernode will get exactly one block and there will be ns

blocks. In this case, the data sent of a supernode is 12 units.
It can be shown that the D-link throughput is:

τD(π) = (nsnd/24)× 4× 10 = 5(nsnd)/3 GB/s. (5)

Now let us consider the case of LR and LL links. Given
our block size of 8× 16, each supernode gets one block. The
L-link load is determined by how the tasks within a block are
mapped to processors within the supernode. Here, a simple
strategy that divides the block into 2 × 2 quads and maps
each quad to a node of the supernode in a sequential manner
suffices. It can be shown that intra-supernode communication
does not become the bottleneck due to striping. Consider inter-
supernode communication, where the paths are of the form
L-D-L-D-L. Let e be a link going from a node u to a node
v in some supernode. We can show that both the amount of
data sent by u to the supernodes incident on v and the amount
of data received by v from the supernodes incident on u are
minimized. As suggested by our principles (Section V-B), the
above load will be well distributed over the L-links. However,
the middle L-hop poses an interesting issue; this is discussed
in the full version.

From our analysis it is clear that with respect to the D-link
throughput, the indirect routing scheme outperforms the direct
routing scheme. Our experimental result show that it is indeed
the case for the overall throughput as well.

D. Mapping Strategies for Transpose Pattern

In this section, we present a brief overview of mapping
strategies for Transpose. We shall argue that, in contrast to
the Halo pattern, direct routing is better than indirect routing
for the Transpose pattern.

The row-mapping and column-mapping strategies (Section
IV-D) are also good under indirect routing because they
provide good load reduction. It can be shown that the D-link
throughput is 10h GB/s. We saw that the same mapping offers
a D-link throughput of 20h GB/s. The reason for the reduction
in the throughput in the current scenario is that indirect routing
uses two D-hops, whereas direct routing uses only one D-hop.

The hybrid mapping approach we discuss in Section IV-D
applies also to the case of indirect routing. The overall
throughput can be shown to be:

τ(π) ≥ min{10h, 320/(4 + nd)}. (6)

A formal derivation is presented in the full version.
From Equations (4) and (6), we see that direct routing

outperforms indirect routing with grid sizes where the smaller
dimension is less than 128.

VI. EXPERIMENTAL STUDY

In order to evaluate the different mapping schemes pre-
sented in this paper, we have developed a simulator that
takes as input: (i) the system configuration (ns and nd);
(ii) a job pattern (iii) a mapping; (iv) the routing scheme.
The simulator performs all the communications according to
the input parameters and calculates the load on every link.
Then, it computes the maximum load on LL, LR and D
links separately. Using these maximum loads, it computes the
overall throughput of the mapping scheme.

Using the simulator, we studied the efficacy of the various
mapping schemes for different job patterns. The following
parameters were considered: (i) Number of supernodes ns

(varied from 16 to 512 in powers of two); (ii) Number of D-
links nd (varied from 1 to 16 in powers of two); (iii) Routing
schemes: Direct and indirect.

A. Halo Pattern

For the Halo pattern, we studied the following eight routing
schemes: (i) Default (DEF); (ii) Node sequential (NODE
SEQ); (iii) Node random (NODE RND); (iv) Drawer Se-
quential (DRW SEQ); (v) Drawer random (DRW RND);
(vi) Supernode sequential (SN SEQ); (vii) Supernode random
(SN RND); (viii) Mod-coloring (MOD CLR). Though node-
sequential and the node-random schemes were better than the
default scheme, they performed poorly in comparison to other
schemes. Consequently, in the interest of space and readability,
we have omitted the results for these two schemes.

ns = 32, nd = varying, Routing = Direct: The results for
direct routing are shown in Table I. In most of the cases, D-
links were the bottleneck. Occasionally, the LR-links became
the bottleneck - these cases are marked with (*) in the table.

The experimental results show that a default mapping
fairs poorly. With regards to supernode-blocking and the
drawer-blocking, recall that our earlier analysis shows that the
supernode-blocking scheme achieves better load reduction on
the D-links in comparison to the drawer-blocking; whereas,
drawer-blocking achieves better load distribution. The results
indicate that two supernode-blocking schemes are better than
the drawer-blocking schemes. The mod-coloring scheme out-
performs all the other schemes. Our earlier analysis had shown
that mod-coloring achieves a good balance between load
reduction and load distribution. For the cases of nd = 1, 2, the
D-link is the bottleneck; hence, a throughput of 20nd GB/s
is achieved, as our analysis had indicated. This is twice that
of the supernode-blocking schemes. For nd ≥ 4, even though
the D-link throughput is twice that of the other schemes, the
overall throughput is diminished as the LR-links become the
bottleneck. In terms of overall throughput, the mod-coloring
scheme outperforms other schemes by as much as factor of 2.

ns = varying, nd = 4, Routing = Direct: The results
under direct routing are shown in Table II, for the fixed value
of nd = 4 and varying ns. Consider the mod-coloring scheme.
In this case the guaranteed D-link throughput is 20nd = 80
GB/s. In conjunction with Table I, it seems that for nd ≥ 4,
LR becomes the bottleneck (irrespective of ns). Despite this

nd DEF DRW DRW SN SN MOD
SEQ RND SEQ RND CLR

1 2 5 8 10 10 20
2 5 10 16 20 20 40
4 10 20 33 40 40 64 (*)
8 20 40 66 80 80 107 (*)
16 40 80 120 (*) 160 128 (*) 160 (*)

TABLE I
JOB=HALO; ns = 32; nd=VARYING; ROUTING=DIRECT

ns DEF DRW DRW SN SN MOD
SEQ RND SEQ RND CLR

16 10 20 29 40 40 64 (*)
32 10 20 33 40 40 64 (*)
64 5 20 37 40 40 64 (*)
128 5 10 38 40 40 64 (*)

TABLE II
JOB=HALO; ns=VARYING; nd=4; ROUTING=DIRECT

phenomenon, the mod-coloring scheme outperforms the other
schemes. A careful study of the LR-throughput behavior of
the mod-coloring scheme would be interesting and may lead
to a better mapping scheme.

ns = 32, nd = varying, Routing = Indirect: The results
under indirect routing are shown in Table III with the type
of bottleneck specified next to the throughput figure. In our
analysis, we had observed that the D-link throughput is directly
proportional to nd and is determined by the block size. For
the case of nd = 1, the supernode blocking schemes use the
optimum block size outperforming the other blocking schemes.
As nd gets larger, the D-link throughput of all the schemes
increases and bottleneck shifts from the D-links to the other
links. When nd = 2, mostly the LR becomes the bottleneck
and for nd ≥ 4, typically the LL becomes the bottleneck.
We performed additional experiment to better understand this
phenomenon. From our discussion regarding the middle L-
hop, we predicted that the middle L-hop could be the cause of
the bottleneck. In order to verify the prediction, we disabled
the accounting for the load due to the middle L-hop in our
program. We found that bottleneck shifted to a different type
of link and concluded that the middle L-hop is indeed a reason
for the bottleneck on the L-links.

B. Transpose Pattern

ns = 32, nd = varying, Routing = Direct: The results

nd DEF DRW DRW SN SN
SEQ RND SEQ RND

1 20 (D) 36 (D) 27 (D) 53 (D) 53 (D)
2 34 (LR) 58 (LR) 53 (D) 91 (LR) 96 (LR)
4 80 (D) 128 (LL) 107 (D) 134 (LL) 174 (LR)
8 103 (LL) 93 (LL) 127 (LL) 183 (LR) 167 (LL)

16 64 (LL) 179 (LL) 103 (LL) 168 (LL) 148 (LL)

TABLE III
JOB=HALO; ns=32; nd=VARYING; ROUTING=INDIRECT

nd SN Hybrid
SEQ Scheme

1 2 (D) 20 (D)
2 5 (D) 40 (D)
4 10 (D) 80 (D)
8 20 (D) 80 (LR)
16 40 (D) 80 (LR)

TABLE IV
TRANSPOSE; ns=32; nd=VARYING; ROUTING=DIRECT

under direct routing are shown in Table IV, with the type
of bottleneck specified next to the throughput figure. We
experimented with our hybrid scheme and compared it against
the supernode blocking scheme. These results indicate that
row-wise/column-wise mapping is superior to the blocking
schemes. The table also conforms with the throughput analysis
predicted by Equation 4.

REFERENCES

[1] R. Rajamony, L. Arimilli, and K. Gildea, “PERCS: The IBM POWER7-
IH high-performance computing system,” IBM Journal of Research and
Development, vol. 55, no. 3, p. 3, 2011.

[2] IBM Power 775 Supercomputer, “http://www-
03.ibm.com/systems/power/hardware/775/,” 2011.

[3] L. Arimilli et al., “The PERCS High-Performance Interconnect,” in 19th

Symp. on High-Performance Interconnects, 2011.
[4] L. Arimilli, S. Baumgartner, S. Clark, D. Dreps, D. Siljenberg, and

A. Maki, “The IBM POWER7 HUB Module: A Terabyte Interconnect
Switch for High-Performance Computer Systems,” in Hot Chips, 2011.

[5] T. Agarwal, A. Sharma, A. Laxmikant, and L. Kalé, “Topology-aware
task mapping for reducing communication contention on large parallel
machines,” in IPDPS, 2006.

[6] R. Bianchinni and J. Shen, “Interprocessor traffic scheduling algorithm
for multiple-processor networks,” IEEE Transactions on Computers,
vol. 36, pp. 396–409, 1987.

[7] P. Ercal, J. Ramanujam, and P. Sadayappan, “Task allocation onto a
hypercube by recursive mincut bipartitioning,” in Third Conference on
Hypercube Concurrent Computers and Applications, 1988.

[8] Z. Fang, X. Li, and L. Ni, “On the communication complexity of
generalized 2-d convolution on array processors,” IEEE Transactions
on Computers, vol. 38, pp. 184–194, 1989.

[9] D. Kerbyson, A. Vishnu, and K. Barker, “Energy templates: Exploiting
application information to save energy,” in CLUSTER, 2011.

[10] A. Bhatele, N. Jain, W. Gropp, and L. Kale, “Avoiding hot-spots on
two-level direct networks,” in SC, 2011.

[11] Graph500, “http://www.graph500.org/,” 2011.
[12] J. Dongarra and P. Luszczek, “Introduction to the HPCChallenge Bench-

mark Suite,” ICL Technical Report, Tech. Rep., 10 2005, iCL-UT-05-01.
[13] K. Barker et al., “On the Feasibility of Optical Circuit Switching for

High-Performance Computing Systems,” in SuperComputing, 2005.
[14] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Ska-

marock, and W. Wang, “The Weather Research and Forecast model:
Software Architecture and Performance,” in 11th ECMWF workshop on
the use of High Performance Computing in Meteorology, 2004.

[15] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” SIGARCH Comput. Archit. News, vol. 36,
pp. 77–88, 2008.

[16] B. Sinharoy et al., “The IBM POWER7 Multicore Server Processor,”
IBM Journal of Research and Development, vol. 55, no. 3, p. 1, 2011.

[17] G. Zheng, G.Kakulapati, and L. Kale, “Bigsim: A parallel simulator for
performance prediction of extremely large parallel machines,” in IPDPS,
2004.

