
Performance Driven Multi-Objective Distributed
Scheduling for Parallel Computations

Ankur Narang Abhinav Srivastava
Naga Praveen Kumar Katta
IBM Research - India, New Delhi

annarang@in.ibm.com, {abhinavsriva,
praveen2005.iitk}@gmail.com

Rudrapatna K. Shyamasundar
Tata Institute of Fundamental Research,

Mumbai
shyam@tifr.res.in

Abstract
With the advent of many-core architectures and strong need
for Petascale (and Exascale) performance in scientific do-
mains and industry analytics, efficient scheduling of paral-
lel computations for higher productivity and performance
has become very important. Further, movement of massive
amounts (Terabytes to Petabytes) of data is very expensive,
which necessitates affinity driven computations. Therefore,
distributed scheduling of parallel computations on multi-
ple places 1 needs to optimize multiple performance objec-
tives: follow affinity maximally and ensure efficient space,
time and message complexity. Simultaneous consideration
of these objectives makes distributed scheduling a particu-
larly challenging problem. In addition, parallel computations
have data dependent execution patterns which requires on-
line scheduling to effectively optimize the computation or-
chestration as it unfolds.

This paper presents an online algorithm for affinity driven
distributed scheduling of multi-place 2 parallel computa-
tions. To optimize multiple performance objectives simulta-
neously, our algorithm uses a low time and message com-
plexity mechanism for ensuring affinity and a randomized
work-stealing mechanism within places for load balanc-
ing. Theoretical analysis of the expected and probabilistic
lower and upper bounds on time and message complexity
of this algorithm has been provided. On multi-core clusters
such as Blue Gene/P (MPP architecture) and Intel multi-
core cluster, we demonstrate performance close to the cus-
tom MPI+Pthreads code. Further, strong, weak and data (in-
creasing input data size) scalability have been demonstrated
on multi-core clusters. Using well known benchmarks, we
demonstrate 16% to 30% performance gain as compared
to Cilk [6] on multi-core Intel Xeon 5570 (NUMA) archi-
tecture. Detailed experimental analysis illustrates efficient
space (main memory) utilization as well. To the best of

1 place is a group of processors with shared memory
2 multi-place refers to a group of places. For example, with each place as an
SMP(Symmetric MultiProcessor), multi-place refers to cluster of SMPs

our knowledge, this is the first time multi-objective affin-
ity driven distributed scheduling algorithm has been de-
signed, theoretically analyzed and experimentally evaluated
in a multi-place setup for multi-core cluster architectures.

1. Introduction
The Exascale computing roadmap has highlighted efficient
locality oriented scheduling in runtime systems as one of
the most important challenges (”Concurrency and Local-
ity” Challenge [10]). Massively parallel many core architec-
tures have NUMA characteristics in memory behavior, with a
large gap between the local and the remote memory latency.
Unless efficiently exploited, this is detrimental to scalable
performance. Languages such as X10 [9], Chapel [8] and
Fortress [3] are based on Partitioned Global Address Space
(PGAS [13]) paradigm. They have been designed and imple-
mented as part of DARPA HPCS program 3 for higher pro-
ductivity and performance on many-core massively parallel
platforms. These languages have built-in support for initial
placement of threads and data structures in the parallel pro-
gram. Therefore, locality (affinity) comes implicitly with the
program. The run-time systems of these languages need to
provide efficient algorithmic scheduling of parallel compu-
tations with medium to fine grained parallelism.

For handling large parallel computations, the scheduling
algorithm (in the run-time system) should be designed to
work in a distributed fashion. Centralized scheduling algo-
rithms suffer from unnecessary overheads and non-scalable
performance. Distributed scheduling avoids these pitfalls of
centralized scheduling approaches. Further, the execution
of the parallel computation happens in the form of a dy-
namically unfolding execution graph. It is difficult for the
compiler to always correctly predict the structure of this
graph and hence perform correct scheduling and optimiza-
tions. This is especially true for data-dependent computa-
tions where static analysis based optimizations in the com-
piler cannot help much for performance driven scheduling.

3 www.highproductivity.org/

14

Therefore, in order to schedule generic parallel computa-
tions and also to exploit runtime execution and data access
patterns, the scheduling should happen in an online fashion.
As the computation graph unfolds in time, the online sched-
uler has to make decisions dynamically on where (which
place and processor) and when (order) to schedule the com-
putations.

Moreover, in order to mitigate the communication over-
heads in scheduling and lower data access and synchroniza-
tion costs in the given parallel computation, it is essential to
follow affinity inherent in the computation. For large scale
computations involving processing petabytes to exabytes of
data, affinity driven scheduling is necessary for scalabil-
ity and superior performance. Further, the critical path of
the scheduled computation is dependent on load balancing
across the cores as well as on time and message complex-
ity. Along with this, the space (main memory) consumed
by the scheduler should be small enough to allow for large
computations. Simultaneous consideration of these objec-
tives: affinity, time, space and message complexity, makes
distributed scheduling a very challenging problem.

In this paper, we address the following affinity driven dis-
tributed scheduling problem.
Given:
(a) An input computation DAG (Fig. 1) that represents a
parallel multi-threaded computation with fine to medium
grained parallelism. Each node in the DAG is a basic op-
eration (instruction) such as and/or/add etc. and is annotated
with a place identifier which denotes where that node should
be executed. Each edge in the DAG represents one of the fol-
lowing:

• Spawn of a new thread.

• Sequential flow of execution.

• Synchronization dependency between two nodes.

The DAG is a strict parallel computation DAG (synchro-
nization dependency edge represents a thread waiting for
the completion of a descendant thread, details in section 3);
(b) A cluster of n SMPs (refer Fig. 2) as the target archi-
tecture on which to schedule the computation DAG. Each
SMP 4 also referred as place has fixed number(m) of pro-
cessors and memory. The cluster of SMPs is referred as the
multi-place setup.

Determine: An online schedule for the nodes of the com-
putation DAG in a distributed fashion that ensures the fol-
lowing:
(a) Exact mapping of nodes onto places as specified in the
input DAG.
(b) Low space, time and message complexity for execution.

4 Symmetric MultiProcessor: group of processors with shared memory

In this paper, we present the design of a novel affinity
driven, online, distributed scheduling algorithm with low
time and message complexity. The algorithm assumes ini-
tial placement annotations on the given parallel computa-
tion with the consideration of load balance across the places.
The algorithm controls the online expansion of the computa-
tion DAG. Our algorithm employs an efficient remote spawn
mechanism across places for ensuring affinity. Randomized
work stealing within a place helps in load balancing. [11]
presents an affinity distributed scheduling algorithm with
high level theoretical results and experimental analysis lim-
ited to Intel shared memory NUMA architecture. This work
is an extension of [11] with detailed theoretical analysis and
also extensive experimental analysis on multi-core clusters
including Intel multi-core cluster as well as Blue Gene/P
with upto 256 places. Our main contributions are:

• We present a novel multi-objective affinity driven, online,
distributed scheduling algorithm. This algorithm is de-
signed for strict multi-place parallel computations.

• Using detailed theoretical analysis, we prove that the
lower bound of the expected execution time is:
O(maxk T

k
1 /m+ T∞,n) and the upper bound is:

O(
∑

k(T
k
1 /m+T k

∞)), where k is a variable that denotes
places from 1 to n, m denotes the number of processors
per place, T k

1 denotes the execution time on a single pro-
cessor for place k, and T∞,n denotes the execution time
of the computation on n places with infinite processors
on each place. Expected and probabilistic lower and up-
per bounds for the message complexity have also been
provided.

• On multi-core cluster architectures such as Blue Gene/P
(MPP architecture) as well as Intel multi-core clusters,
we demonstrate that the performance of our distributed
scheduling algorithm is close to custom (hand-written)
MPI+Pthreads code. Further, strong, weak and data (in-
crease in input size) scalability on multi-core clusters has
been demonstrated. Using well known parallel bench-
marks (Heat, Molecular Dynamics and Conjugate Gradi-
ent), we demonstrate performance gains of around 16%
to 30% over Cilk on multi-core Intel (NUMA) architec-
ture. Detailed analysis illustrates efficient space (main
memory) utilization as well.

2. Related Work
Scheduling of dynamically created tasks for shared mem-
ory multi-processors has been a well studied problem. The
work on Cilk [6] promoted the strategy of randomized work
stealing. Here, a processor that has no work (thief) randomly
steals work from another processor (victim) in the system.
[6] proved efficient bounds on space (O(P · S1)) and time
(O(T1/P +T∞)) for scheduling of fully-strict computations
(synchronization dependency edges go from a thread to only
its immediate parent thread, section 3) in an SMP platform;

15

where P is the number of processors, T1 and S1 are the time
and space for sequential execution respectively, and T∞ is
the execution time on infinite processors. We consider lo-
cality oriented scheduling in distributed environments and
hence are more general than Cilk, and we also provide de-
tailed time and message complexity analysis.

The importance of data locality for scheduling threads
motivated work stealing with data locality [1] wherein the
data locality was discovered on the fly and maintained as
the computation progressed. This work also explored initial
placement for scheduling and provided experimental results
to show the usefulness of the approach; however, affinity was
not always followed, the scope of the algorithm was limited
to only SMP environments and its time complexity was
not analyzed. [4] analyzed the time complexity (O(T1/P +
T∞)) for scheduling general parallel computations on SMP
platforms but does not consider locality oriented scheduling.
We consider distributed scheduling problem across multiple
places (cluster of SMPs) while ensuring affinity and also
provide detailed analysis of time and message complexity
bounds.

[7] considers work-stealing algorithms in a distributed-
memory environment, with adaptive parallelism and fault
tolerance. Here task migration was entirely pull-based (via a
randomized work stealing algorithm) hence it ignored affin-
ity and also didn’t provide any formal proof for the re-
source utilization properties. The work in [2] described a
multi-place(distributed) deployment for parallel computa-
tions for which initial placement based scheduling strategy
is appropriate. A multi-place deployment has multiple places
connected by an interconnection network where each place
has multiple processors connected as in an SMP platform.
It showed that online greedy scheduling of multi-threaded
computations may lead to physical deadlock in presence
of bounded space and communication resources per place.
However, the computation did not respect affinity always
and no time or communication bounds were provided. Also,
the aspect of load balancing was not addressed even within
a place. We ensure affinity along with intra-place load bal-
ancing in a multi-place setup. We show empirically, that our
algorithm has efficient space (main memory) utilization as
well.

KAAPI 5 (”Kernel for Adaptive, Asynchronous Paral-
lel and Interactive programming”) is a C++ library that al-
lows execution of fine/medium grain multi-threaded compu-
tations with dynamic data flow synchronizations. However,
its performance for large number of places is not clearly
specified. We demonstrate multi-place performance on Blue
Gene/P architecture as well as Intel Cluster and show that
it is close to custom MPI+Pthreads code. 6 is a C++ based
parallel programming system (Charm++) that implements
a message-driven migratable objects programming model,

5 https://gforge.inria.fr/projects/kaapi/
6 http://charm.cs.uiuc.edu/

supported by an adaptive runtime system. It is based on a
message-driven migratable objects programming model, and
consists of a C++-based parallel notation, an adaptive run-
time system (RTS) that automates resource management, a
collection of debugging and performance analysis tools, and
an associated family of higher level languages. It has been
used to program several highly scalable parallel applications.
This programming model is different from the Cilk multi-
threaded programming model which we also leverage.

[5] proves stability of the basic Cilk-style work stealing
mechanism using markov chain modeling and multi-step
analysis along with Lyapunov function based arguments.
[12] presents a general methodology for computing the ex-
pected makespan based on the analysis of an adequate poten-
tial function which represents the load unbalance between
the local lists. A bound on the deviation from the mean is
also derived. Then, this technique is applied to show that the
expected makespan for scheduling W unit independent tasks
on m processors is equal to W/m with an additional term
in 3.65 log(W). While both the above efforts are for a sin-
gle place, we consider multiple places and provide potential
function based analysis to derive expected and probabilistic
lower and upper bounds on time and message complexity
for our affinity driven algorithm.

[11] presents an affinity distributed scheduling algorithm
with high level theoretical results and experimental analy-
sis limited to Intel shared memory NUMA architecture. This
work is an extension of [11] with detailed theoretical analy-
sis and also extensive experimental analysis on multi-core
clusters including Intel multi-core cluster as well as Blue
Gene/P with upto 256 places.

3. System and Computation Model
The system on which the computation DAG is scheduled
is assumed to be cluster of SMPs connected by an Active
Message Network (Fig. 2). Each SMP is a group of pro-
cessors with shared memory. Each SMP is also referred to
as place in the paper. Active Messages ((AM)7 is a low-
level lightweight RPC(remote procedure call) mechanism
that supports unordered, reliable delivery of matched re-
quest/reply messages. We assume that there are n places and
each place has m processors.

The parallel computation to be dynamically scheduled
on the system, is assumed to be specified by the program-
mer in languages such as X10 and Chapel. To describe our
distributed scheduling algorithm, we assume that the paral-
lel computation has a DAG(directed acyclic graph) structure
and consists of nodes that represent basic operations (as in
a processor instruction set architecture) like and, or, not,
add and so forth. There are edges between the nodes (ba-
sic instructions such as and/or/add etc) in the computation

7 Active Messages defined by the AM-2:
http://now.cs.berkeley.edu/AM/active messages.html

16

DAG (Fig. 1) that either represent: (a) creation of new ac-
tivities (spawn edge), (b) sequential execution flow between
the nodes within a thread/activity (continue edge) and (c)
synchronization dependencies (dependence edge) between
the nodes. In the paper, we refer to the parallel computa-
tion over nodes (basic instructions such as and/add/or) to be
scheduled as the computation DAG. At a higher level, the
parallel computation can also be viewed as a computation
tree of threads. Each thread (as in multi-threaded programs)
is a sequential flow of execution of instructions and con-
sists of a set of nodes (basic operations/instructions). Each
thread is assigned to a specific place (affinity as specified
by the programmer). Hence, such a computation is called
multi-place computation and DAG is referred to as place-
annotated computation DAG (Fig. 1: v1..v20 denote nodes,
T1..T6 denote threads and P1..P3 denote places).

Based on the structure of dependencies between the nodes
in the computation DAG, there can be following types of par-
allel computations:
(a) Fully-strict computation: Dependencies are only be-
tween the nodes of a thread and the nodes of its immediate
parent thread.
(b) Strict computation: Dependencies are only between the
nodes of a thread and the nodes of any of its ancestor threads.
(c) Terminally strict computation: (Fig. 1). Here, the depen-
dencies arise due to a thread waiting for the completion of its
descendants. Every dependency edge, therefore, goes from
the last instruction of a thread to one of its ancestor threads
with the following restriction: In a subtree rooted at a thread
called Γr, if there exists a dependence edge from any thread
in the subtree to the root thread Γr, then there cannot exist
any dependence edge from the threads in the subtree to the
ancestors of Γr. Intuitively speaking, it does not allow the
synchronization edges to cross each other.

The following notations are used in the paper. P =
{P1, · · · , Pn} denote the set of places. {W 1

i ,W
2
i ..W

m
i }

denote the set of cores (processors) at place Pi. Dmax de-
notes the maximum depth of the computation tree in terms
of number of threads. T∞,n denotes the execution time of
the computation DAG over n places with infinite processors
at each place. T k

∞ denotes the execution time for activities
assigned to place Pk using infinite processors. Note that,
T∞,n ≤

∑
1≤k≤n T

k
∞. T k

1 denotes the time taken by a sin-
gle processor for the activities assigned to place k.

4. Distributed Scheduling Algorithm
Consider a strict place-annotated computation DAG. The
distributed scheduling algorithm described below schedules
threads with affinity, at only their respective places. Within a
place, work-stealing is enabled to allow load-balanced exe-
cution of the computation sub-graph associated with that the
place. The computation DAG unfolds in an online fashion in
a breadth-first manner across places when the affinity driven
threads are pushed onto their respective remote places. For

v1 v2 v14 v18 v19 v20

v3 v6 v9 v13 v15 v16 v17

v4 v5 v7 v8 v10 v11 v12

T1 @ P1

T2 @ P2 T6 @ P1

T3 @ P3 T4 @ P3 T5 @P2

Spawn edge

Continue edge

Dependence edge

v1 v2 v14 v18 v19 v20

v3 v6 v9 v13 v15 v16 v17

v4 v5 v7 v8 v10 v11 v12

T1 @ P1

T2 @ P2 T6 @ P1

T3 @ P3 T4 @ P3 T5 @P2

Spawn edge

Continue edge

Dependence edge

Figure 1. Place-annotated Computation Dag

PE PE

PE PE

L2 Cache

L2 Cache

System Bus

SMP

Single Place with
multiple processors

PE PE

SMP Cluster

Memory

SMP Node

….
PE PE

Memory

SMP Node

….

Interconnect (Active
Message Network)

…

Multiple Places with multiple
processors per place

PE PE

PE PE

L2 Cache

L2 Cache

System Bus

SMP

Single Place with
multiple processors

PE PE

SMP Cluster

Memory

SMP Node

….
PE PE

Memory

SMP Node

….

Interconnect (Active
Message Network)

…

Multiple Places with multiple
processors per place

Figure 2. Multiple Places: Cluster of SMPs

space (main memory) efficiency, before a place-annotated
thread is pushed onto a place, the remote place buffer (FAB,
see below) is checked for space utilization. Here, space uti-
lization refers to occupancy of the FAB buffer. If the space
utilization (occupancy) of the remote buffer (FAB) is high
i.e. greater than a threshold say 0.5, then the push gets de-
layed for a limited amount of time. This helps in appropriate
space-time trade-off for the execution of the parallel compu-
tation. Within a place, the online unfolding of the computa-
tion DAG happens in a depth-first manner to enable efficient
space and time execution. Sufficient space is assumed to ex-
ist at each place, so physical deadlocks due to lack of space
cannot happen in this algorithm.

Each place maintains a Fresh Activity Buffer (FAB) which
is managed by a dedicated processor (different from work-
ers) at that place. A thread that is annotated with a remote
place is pushed into the FAB at that place. Each worker at a
place has a Ready Deque and a Stall Buffer (refer Fig. 3). The
Ready Deque of a processor contains the threads of the par-
allel computation that are ready to execute. The Stall Buffer
contains the threads that have been stalled due to dependency
on another threads in the parallel computation. The FAB at
each place as well as the Ready Deque at each worker use
a concurrent deque implementation. An idle processor at a
place will attempt to randomly steal work from other pro-
cessors at the same place (randomized work stealing). Note
that a thread which is pushed onto a place can move between

17

Worker(1)

Place(j)

Stall Buffer

FAB

Worker(2)

Worker(m)

Dedicated

Processor

R
e
a
d

y
D

e
q

u
e

Worker(1)

Place(i)

Stall Buffer

FAB

Worker(2)

Worker(m)

Dedicated

Processor

R
e
a

d
y

D
e
q

u
e

Remote Spawn

request (AM(B))

Spawn accept

Worker(1)

Place(j)

Stall Buffer

FAB

Worker(2)

Worker(m)

Dedicated

Processor

R
e
a
d

y
D

e
q

u
e

Worker(1)

Place(i)

Stall Buffer

FAB

Worker(2)

Worker(m)

Dedicated

Processor

R
e
a

d
y

D
e
q

u
e

Remote Spawn

request (AM(B))

Spawn accept

Figure 3. Affinity Driven Distributed Scheduling Algo-
rithm

workers at that place (due to work stealing) but can not move
to another place and thus obeys affinity at all times. The dis-
tributed scheduling algorithm is given below.

At any step, a thread A at the rth worker (at place i), W r
i ,

may perform the following actions:

1. Spawn:

(a) A spawns thread B at place,Pj , i �= j: A sends AM(B)
(active message for B) to the remote place. If the
space utilization of FAB(j) is below a given threshold,
then AM(B) is successfully inserted in the FAB(j) (at
Pj) and A continues execution. Else, this worker waits
for a limited time, δt, before retrying the thread B
spawn on place Pj (Fig. 3).

(b) A spawns B locally: B is successfully created and
starts execution whereas A is pushed into the bottom
of the Ready Deque.

2. Terminates (A terminates): The worker at place Pi, W r
i ,

where A terminated, picks a thread from the bottom of
the Ready Deque for execution. If none available in its
Ready Deque, then it steals from the top of other workers’
Ready Deque. Each failed attempt to steal from another
worker’s Ready Deque is followed by attempt to get the
topmost thread from the FAB at that place. If there is no
thread in the FAB then another victim worker is chosen
from the same place.

3. Stalls (A stalls): A thread may stall due to dependencies
in which case it is put in the Stall Buffer in a stalled state.
Then same as Terminates (case 2) above.

4. Enables (A enables B): A thread, A, (after termination
or otherwise) may enable a stalled thread B in which case
the state of B changes to enabled and it is pushed onto the
top of the Ready Deque.

4.1 Time Complexity Analysis

The time complexity of this affinity driven distributed schedul-
ing algorithm in terms of number of throws during execu-

tion is presented below. Each throw represents an attempt
by a worker(thief) to steal an activity from either another
worker(victim) or FAB at the same place.

LEMMA 4.1. Consider a strict place-annotated computa-
tion DAG with work per place, T k

1 , being executed by the dis-
tributed scheduling algorithm presented in section 4. Then,
the execution (finish) time for place,k, is O(T k

1 /m+Qk
r/m+

Qk
e/m), where Qk

r denotes the number of throws when there
is at least one ready node at place k and Qk

e denotes the
number of throws when there are no ready nodes at place k.
The lower bound on the execution time of the full computa-
tion is O(maxk(T

k
1 /m + Qk

r/m)) and the upper bound is
O(

∑
k(T

k
1 /m+Qk

r/m)).

Proof At any place, k, we collect tokens in three buckets:
work bucket, ready-node-throw bucket and null-node-throw
bucket. In the work bucket the tokens get collected when the
processors at the place k execute the ready nodes. Thus, the
total number of tokens collected in the work bucket is T k

1 .
When, the place has some ready nodes and a processor at
that place throws or attempts to steal ready nodes from the
PrQ or another processor’s deque then the tokens are added
to the read-node-throw bucket. If there are no ready nodes at
the place then the throws by processors at that place are ac-
counted for by placing tokens in the null-node-throw bucket.
The tokens collected in these three buckets account for all
work done by the processors at the place till the finish time
for the computation at that place. Thus, the finish time at the
place k, is O(T k

1 /m+Qk
r/m+Qk

e/m). The finish time of
the complete computation DAG is the maximum finish time
over all places. So, the execution time for the computation is
maxk O(T k

1 /m+Qk
r/m+Qk

e/m). We consider two extreme
scenarios for Qk

e that define the lower and upper bounds. For
the lower bound, at any step of the execution, every place has
some ready node, so there are no tokens placed in the null-
node-throw bucket at any place. Hence, the execution time
per place is O(T k

1 /m+Qk
r/m). The execution time for the

full computation becomes O(maxk(T
k
1 /m + Qk

r/m)). For
the upper bound, there exists a place, say (w.l.o.g.) s, where
the number of tokens in the null-node-throw buckets, Qs

e, is
equal to the sum of the total number of tokens in the work
buckets of all other places and the tokens in the read-node-
throw bucket over all other places. Thus, the finish time for
this place, T s

f , which is also the execution time for the com-
putation is given by:

T s
f = O(

∑

1≤k≤n

(T k
1 /m+Qk

r/m)) (4.1)

�

Next, we compute the bound on the number of tokens in
the ready-node-throw bucket using potential function based
analysis [4]. Our unique contribution is in proving the lower
and upper bounds of time complexity and message complex-

18

ity for the multi-place affinity driven distributed scheduling
algorithm presented in section 4 that involves both intra-
place work stealing and remote place affinity driven work
pushing.

Let there be a non-negative potential associated with each
ready node in the computation dag. If the execution of node
u enables node v, then edge(u,v) is called the enabling edge
and u is called the designated parent of v. The subgraph of
the computation DAG consisting of enabling edges forms a
tree, called the enabling tree. During the execution of the
affinity driven distributed scheduling algorithm (section 4),
the weight of a node u in the enabling tree, w(u) is defined
as (T∞,n−depth(u)). For a ready node, u, we define φi(u),
the potential of u at timestep i, as:

φi(u) = 32w(u)−1, if u is assigned; (4.2a)

= 32w(u), otherwise (4.2b)

All non-ready nodes have 0 potential. The potential at
step i, φi, is the sum of the potential of each ready node at
step i. When an execution begins, the only ready node is the
root node with potential, φ(0) = 32T∞,n−1. At the end the
potential is 0 since there are no ready nodes. Let Ei denote
the set of processes whose deque is empty at the beginning
of step i, and let Di denote the set of all other processes with
non-empty deque. Let, Fi denote the set of all ready nodes
present in the FABs of all places. The total potential can be
partitioned into three parts as follows:

φi = φi(Ei) + φi(Di) + φi(Fi) (4.3)

where,

φi(Ei) =
∑

qεEi

φi(q) =
∑

1≤k≤n

φk
i (Ei); (4.4a)

φi(Di) =
∑

qεDi

φi(q) =
∑

1≤k≤n

φk
i (Di); (4.4b)

φi(Fi) =
∑

qεFi

φi(q) =
∑

1≤k≤n

φk
i (Fi); (4.4c)

where, φk
i () are respective potential components per place k.

The potential at the place k, φk
i , is equal to the sum of the

three components, i.e.

φk
i = φk

i (Ei) + φk
i (Di) + φk

i (Fi) (4.5)

Actions such as assignment of a node from deque to the pro-
cessor for execution, stealing nodes from the top of victim’s
deque and execution of a node, lead to decrease of potential
(refer Lemma 4.3). The idle processors at a place do work-
stealing alternately between stealing from deque and steal-
ing from the FAB. Thus, 2P throws in a round consist of P
throws to other processor’s deque and P throws to the FAB.
We first analyze the case when randomized work-stealing
takes place from another processor’s deque using balls and
bins game to compute the expected and probabilistic bound

on the number of throws. For uniform and random throws in
the balls and bins game it can be shown that one is able to get
a constant fraction of the reward with constant probability
(refer Lemma 4.4). The lemma below states that whenever
P or more throws occur for getting nodes from the top of
the deques of other processors at the same place, the poten-
tial decreases by a constant fraction of φi(Di) with a con-
stant probability. For our distributed scheduling algorithm
(section 4), P = m (only intra-place work stealing). The
following lemmas: Lemma 4.2, Lemma 4.3 and Lemma 4.4
are all taken from [4].

LEMMA 4.2. Consider any round i and any later round j,
such that at least P throws have taken place between round
i (inclusive) and round j (exclusive), then, Pr{(φi − φj) ≥
1/4.φi(Di)} > 1/4

There is an additional component of potential decrease
which is due to pushing of ready nodes onto remote FABs.
Let the potential decrease due to this transfer be φk

i→j(out).
The new probabilistic bound becomes:

Pr{(φi −φj) ≥ (1/4.φi(Di)+φk
i→j(out))} > 1/4 (4.6)

The throws that occur on the FAB at a place can be
divided into two cases. In the first case, let the FAB have at
least P = m activities at the beginning of round i. Since,
all m throws will be successful, we consider the tokens
collected from such throws as work tokens and assign them
to the work bucket of the respective processors. In the second
case, in the beginning of round i, the FAB has less than
m activities. Therefore, some of the m throws might be
unsuccessful. Hence, from the perspective of place k, the
potential φk

i (Fi) gets reduced to zero. The potential added
at place k in φk

j (Fj) is due to ready nodes pushed from the
deque of other places. Let this component be φk

i−j(in). The
potential of the FAB at the beginning of round j is:

φk
j (Fj)− φk

i (Fi) = φk
i→j(in), (4.7)

Furthermore, at each place the potential also drops by
a constant factor of φk

i (Ei). If a process q in the set Ek
i

does not have an assigned node, then φi(q) = 0. If q has
an assigned node u, then φi(q) = φi(u) and when node u
gets executed in round i then the potential drops by at least
5/9.φi(u). Adding over each process q in Ek

i , we get:

{φk
i (Ei)− φk

j (Ej)} ≥ 5/9.φk
i (Ei). (4.8)

LEMMA 4.3. The potential function satisfies the following
properties

1. When node u is assigned to a process at step i, then the
potential decreases by at least 2/3φi(u).

2. When node u is executes at step i, then the potential
decreases by at least 5/9φi(u) at step i.

3. For any process, q in Di, the topmost node u in the deque
for q maintains the property that: φi(u) ≥ 3/4φi(q)

19

4. If the topmost node u of a processor q is stolen by pro-
cessor p at step i, then the potential at the end of step i
decreases by at least 1/2φi(q) due to assignment or exe-
cution of u.

LEMMA 4.4. Balls and Bins Game: Suppose that at least P
balls are thrown independently and uniformly at random into
P bins, where for i = 1,2...P, bin i has weight Wi. The total
weight W =

∑
1≤i≤P Wi. For each bin i, define a random

variable, Xi as,

Xi = Wi, if some ball lands in bin i (4.9a)

= 0, otherwise (4.9b)

If X =
∑

1≤i≤P Xi, then for any β in the range 0 < β <
1, we have Pr{X ≥ β.W} > 1− 1/((1− β)e)

THEOREM 4.5. Consider any place-annotated multi-threaded
computation with total work T1 and work per place denoted
by T k

1 , being executed by the affinity driven multi-place dis-
tributed scheduling algorithm 4. Let the critical-path length
for the computation be T∞. The lower bound on the expected
execution time is O(maxk T

k
1 /m + T∞,n) and the upper

bound is O(
∑

k(T
k
1 /m + T k

∞)). Moreover, for any ε > 0,
the execution time is O(maxk T

k
1 /m + T∞,n + log(1/ε))

with probability at least 1− ε.

Proof Lemma 4.1 provides the lower bound on the execu-
tion time in terms of number of throws. We shall prove that
the expected total number of throws per place is O(T∞,n ·
m), and that the total number of throws per place is O(T∞,n ·
m+ log(1/ε)) with probability at least 1− ε.

We analyze the number of ready-node-throws by break-
ing the execution into phases of θ(P = mn) throws (O(m)
throws per place). We show that with constant probability, a
phase causes the potential to drop by a constant factor, and
since we know that the potential starts at φ0 = 32T∞,n−1

and ends at zero, we can use this fact to analyze the number
of phases. The first phase begins at step t1 = 1 and ends
at the first step, t′1, such that at least P throws occur during
the interval of steps [t1, t′1]. The second phase begins at step
t2 = t′1 + 1, and so on.

Combining equations (4.6), (4.7) and (4.8) over all places,
the components of the potential at the places correspond-
ing to φk

i−j(out) and φk
i−j(in) cancel out. Using this and

Lemma 4.2, we get that: Pr{(φi − φj) ≥ 1/4.φi} > 1/4.
We say that a phase is successful if it causes the poten-

tial to drop by at least a 1/4 fraction. A phase is successful
with probability at least 1/4. Since the potential drops from
32T∞,n−1 to 0 and takes integral values, the number of suc-
cessful phases is at most (2T∞,n − 1) log4/3 3 < 8T∞,n.
The expected number of phases needed to obtain 8T∞,n suc-
cessful phases is at most 32T∞,n. Since each phase contains
O(mn) ready-node throws, the expected number of ready-
node-throws is O(T∞,n · m · n) with O(T∞,n · m) throws
per place. The high probability bound can be derived using
Chernoff’s Inequality. We omit this for brevity.

Now, using Lemma 4.1, we get that the lower bound on
the expected execution time for the affinity driven multi-
place distributed scheduling algorithm is O(maxk T

k
1 /m +

T∞,n).
For the upper bound, consider the execution of the sub-

graph of the computation at each place. The number of
throws in the ready-node-throw bucket per place can be sim-
ilarly bounded by O(T k

∞.m). Further, the place that finishes
the execution in the end, can end up with number of tokens
in the null-node-throw bucket equal to the tokens in work
and read-node-throw buckets of other places. Hence, the fin-
ish time for this place, which is also the execution time of the
full computation DAG is O(

∑
k(T

k
1 /m+T k

∞)). The proba-
bilistic upper bound can be similarly established using Cher-
noff bound. �

The following theorem bounds the message complexity
of the affinity driven work stealing algorithm (Section 4).

THEOREM 4.6. Consider the execution of a strict place-
annotated computation DAG with critical path-length T∞,n

by the Affinity Driven Distributed Scheduling Algorithm
(section 4). Then, the total number of bytes communicated
across places is O(I · (Smax + nd)) and the lower bound
on number of bytes communicated within a place has the
expectation O(m · T∞,n · Smax · nd), where nd is the maxi-
mum number of dependence edges from the descendants to a
parent and I is the number of remote spawns from one place
to a remote place. Moreover, for any ε > 0, the probability is
at least (1 − ε) that the lower bound on the communication
overhead per place is O(m · (T∞,n+log(1/ε)) ·nd ·Smax).
Similarly message upper bounds exist.

Proof First consider inter-place messages. Let the number
of affinity driven pushes to remote places be O(I), each
of maximum O(Smax) bytes. Further, there could be at
most nd dependencies from remote descendants to a par-
ent, each of which involves communication of constant,
O(1), number of bytes. So, the total inter place communi-
cation is O(I.(Smax + nd)). Since the randomized work
stealing is within a place, the lower bound on the ex-
pected number of steal attempts per place is O(m.T∞,n)
with each steal attempt requiring Smax bytes of commu-
nication within a place. Further, there can be communica-
tion when a child thread enables its parent and puts the
parent into the child processors’ Ready Deque. Since this
can happen nd times for each time the parent is stolen, the
communication involved is at most nd.Smax). So, the ex-
pected total intra-place communication across all places is
O(n.m.T∞,n.Smax.nd). The probabilistic bound can be de-
rived using Chernoff’s inequality and is omitted for brevity.
Similarly, expected and probabilistic upper bounds can be
established for communication complexity within the places.
�

20

5. Results & Analysis
We implemented our distributed scheduling algorithm (ADS)
and the pure Cilk style work stealing based scheduler (CWS)
using pthreads (NPTL) API. We also implemented custom
(referred as Custom) optimized MPI + Pthreads code for
Heat and MD benchmarks to be run on multi-core clusters.
The code was compiled using gcc version (4.1.2) with op-
tions -O2 and -m64. Using well known benchmarks the per-
formance of ADS was compared with CWS and also with
original Cilk 8 scheduler (referred as CORG in this section).
The benchmarks used are the following:

• Heat: Jacobi over-relaxation that simulates heat propaga-
tion on a two dimensional grid for a number of steps [1].
For our scheduling algorithm (ADS), the 2D grid is par-
titioned uniformly across the available places (SMPs). 9.
The Jacobi over-relaxation algorithm runs for Nt itera-
tions. For all implementations (Custom, ADS and CWS),
the computation tree consists of threads that seek to di-
vide the underlying matrix further as compared to the par-
ent thread until the number of cols reaches leafmaxcol.

• Molecular Dynamics (MD): This is classical Molecular
Dynamics simulation, using the Velocity Verlet time in-
tegration scheme. The simulation was carried on varying
number of molecules from 4K to 32K molecules for 100
iterations. For data partitioning, the whole region where
all molecules are located, is divided into as many parts as
the number of places (SMPs). Each place performs force
calculations and position updates for the molecules in its
region. In each iteration, the force on each molecule from
other molecules in the same region are performed. As the
iterations proceed, molecules can move around to neigh-
bor regions.

• Conjugate Gradient (NPB 10 benchmark): Conjugate
Gradient (CG) approximates the largest eigenvalue of
a sparse, symmetric, positive definite matrix using in-
verse iteration. The matrix is generated by summing
outer products of sparse vectors, with a fixed number of
nonzero elements in each generating vector. The bench-
mark computes a given number of eigenvalue estimates,
referred to as outer iterations, using 25 iterations of the
CG method to solve the linear system in each outer itera-
tion.

We compared Strong scalability, Weak scalability and
Data scalability between ADS and Custom. Strong scalabil-
ity refers to the reduction in time with increase in the number
of cores/processors used while keeping the input data size
constant (input data size refers to matrix size in case of Heat

8 http://supertech.csail.mit.edu/cilk/
9 The Dmax for this benchmark is log(numCols/leafmaxcol) where
numCols (Ny) represents the number of columns in the input two-
dimensional grid (NxXNy size) and leafmaxcol represents the number of
columns to be processed by a single thread
10 http://www.nas.nasa.gov/NPB/Software

and to number of molecules in case of MD). Weak scalabil-
ity refers to variation in time when both the input data size as
well as the number of cores/processors are increased in same
proportions. Data scalability refers to increase of time with
increase in the input data size while keeping the number of
cores/processors the same.

5.1 Performance Comparison on Multi-core Clusters

The performance comparison between Custom and ADS was
done on Blue Gene/P 11 (MPP architecture) as well as on
Intel multi-core cluster. Each node (place) in Blue Gene/P is
a quad-core chip with frequency of 850 MHz having 2 GB of
DRAM and 32 KB of L1 cache per core. Nodes (places) are
interconnected by a 3D torus interconnect (3.4 Gbps per link
in each of the six directions) apart from separate collective
and global barrier networks. The Intel multi-core cluster has
Intel 8-core Xeon 5504 per place (SMP) and multiple places
(SMPs) are connected by 1 Gbps Ethernet.

5.1.1 Performance Comparison for Heat

Fig. 4 demonstrates the strong scalability of ADS on large
number of places (with 3 threads (cores) per place, including
the communication thread) on Blue Gene/P. ADS achieves
126× speedup with 128× increase in number of places,
which results in parallel efficiency of around 98%, while
Custom code achieves 118× speedup resulting in parallel ef-
ficiency of 92%. Further, ADS performance is within 6.7%
of the performance of Custom and the difference in per-
formance reduces to zero with increasing number of places
from 2 to 256 places.

Fig. 5 demonstrates the weak scalability of ADS on large
number of places (with 3 threads (cores) per place, including
the communication thread) on Blue Gene/P. ADS incurs only
1.1× increase of time with 8× increase in number of places
and input data size (matrix size increases from (64K X 4K)
to (512K X 4K)). Further, ADS performance is within 4% of
the performance of Custom.

Fig. 6 demonstrates the data scalability of ADS with in-
crease in Nx from 64K to 512K on 256 places of BG/P, with
Ny = 4K and Nt = 100. ADS incurs 7.8× increase in
time with 8× increase in data, which illustrates linear data
scalability. Further, ADS performance is within 3% of the
performance of Custom even for large matrix sizes (512K X
4K).

Fig. 7 demonstrates strong scalability of ADS for increas-
ing number of threads per place (with total four places)
on the Intel multi-core cluster. ADS achieves around 6.4×
speedup with 6× increase in number of threads (cores) per
SMP. This super-linear speedup is due to decrease in over-
heads per place with increasing number of threads per place.
Custom also achieves super-linear speedup of 7.4×. Further,
ADS performance is within 18.5% of the performance of
Custom.

11 http://www.research.ibm.com/bluegene

21

Strong Scalability (Heat): ADS vs Custom (BG/P)

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16 32 64 128 256

Number of Places

To
ta

l
T

im
e

(s
)

Custom

ADS

Figure 4. Heat: Strong Scalability (BG/P)

Weak Scalability (Heat): ADS vs Custom (BG/P)

85

90

95

100

105

110

32 64 128 256

Number of Places

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 5. Heat: Weak Scalability (BG/P)

Fig. 8 demonstrates weak scalability of ADS for increas-
ing number of threads per place (with two places) on the
Intel multi-core cluster along with proportionate increase of
input matrix size (from (12K X 4K) to (72K X 4K)). ADS
incurs around 5× decrease of time with 6× increase in num-
ber of threads per place and data and Custom also incurs a
similar (5.3×) decrease in time. This is due to reduction in
computation tree processing overheads and increase in cache
performance with the increase in the number of threads per
place. Further, ADS performance is within 9.2% of the per-
formance of Custom.

Fig. 9 demonstrates the data scalability of ADS on large
input data (matrix size) on the Intel multi-core cluster, for 6
threads per place and 4 places (SMPs) along with Ny = 4K
and Nt = 100. ADS incurs around 8.6× increase in time
with 8× increase in data (Nx increases from 32K to 256K),
while Custom incurs 9.3× increase in time. However, there
is a sudden increase in time (3×) as Nx increases from
256K to 512K. This is due to fall in cache performance with
Nx = 512K. Further, ADS performance is within 4% of the
performance of Custom for large matrix sizes (512K X 4K).

Data Scalability (Heat): ADS vs Custom (BG/P)

0

10

20

30

40

50

60

70

80

90

100

64K 128K 256K 384K 512K

Nx (Ny = 4K)

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 6. Heat: Data Scalability (BG/P)

Strong Scalability (Heat): ADS vs Custom (Intel Cluster)

0

50

100

150

200

250

4x1 4x2 4x4 4x6

Number of Places X Number of
Threads/Place

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 7. Heat: Strong Scalability (Intel Cluster)

Weak Scalability (Heat): ADS vs Custom (Intel Cluster)

0

50

100

150

200

250

300

350

400

2 X 1 2 X 2 2 X 3 2 X 4 2 X 6

Number of Places X Number of
Threads/Place

T
o

ta
l

T
im

e
(s

Custom

ADS

Figure 8. Heat: Weak Scalability (Intel Cluster)

22

Data Scalability (Heat): ADS vs Custom (Intel Cluster)

0

50

100

150

200

250

300

350

400

32k 64k 72k 128k 256k 512k

Nx (Ny = 4K)

To
ta

l T
im

e
(s

)

Custom

ADS

Figure 9. Heat: Data Scalability (Intel Cluster)

5.1.2 Performance Comparison for MD

Fig. 10 demonstrates the strong scalability of ADS for in-
creasing number of places, from 8 to 256 places. ADS
achieves a super-linear speedup of around 219× with 32×
increase in number of nodes; while Custom achieves 874×
speedup for the same increase in nodes. The reason for the
super-linear speedup for both ADS and Custom is that with
the smaller number of nodes (places), all molecules are on
a single place which contains a single region for calculating
forces between the molecules and hence more (quadrati-
cally larger) computations are performed. For larger number
of nodes (places), such as 256, the molecules have spread
around to 256 regions due to which the number of force
calculations have gone down quadratically.

Fig. 11 demonstrates the weak scalability of ADS with in-
creasing number of nodes and Nx on BG/P. ADS has around
3.3× decrease in time with 4× increase in the number of
places and the number of molecules. In comparison, Custom
has around 2× increase in time with 4× increase in number
of places.

Fig. 12 demonstrates the data scalability of ADS on large
input data (number of molecules) varying from 8K to 32K on
BG/P, with 3 threads (cores) per place and total 256 places.
ADS incurs around 3.6× increase in time with 4× increase
in the number of molecules. Custom has 1.5× increase in
time, with 4× increase in the number of molecules.

Fig. 13 demonstrates the strong scalability of ADS for
increasing number of cores, with up to 4 places on the Intel
multi-core cluster. ADS achieves a super-linear of around
19.32× with 6× increase in the total number of cores;
while Custom achieves 21× speedup for the same increase
in cores. The reason for the super-linear speedup for both
ADS and Custom is that with smaller number of cores, all
molecules are on a single place which hosts a single region
for calculating forces between the molecules and hence more
computations are performed. For larger number of cores,
such as 24, 4 places are used, which means the molecules

Strong Scalability (MD): ADS vs Custom (BG/P)

0

200

400

600

800

1000

1200

1400

1600

1800

8 16 32 64 128 256

Number of Places

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 10. MD: Strong Scalability (BG/P)

have spread around to 4 regions due to which the number
of force calculations have gone down. Further, ADS perfor-
mance is within 15.8% of the performance of Custom at 4
cores and within 26% at 24 cores.

Fig. 14 demonstrates the weak scalability of ADS with
increasing number of total cores on the Intel multi-core
cluster. ADS has only around 1.25× increase in time with
3× increase in number of cores and the input number of
molecules (5K to 16K molecules). In comparison, Custom
incurs around 2× increase in time with 3× increase in num-
ber of cores and molecules. The ADS performance is within
54% from the performance of Custom at 12 cores, even
though initially this gap is around 2.5×.

Fig. 15 demonstrates the data scalability of ADS on large
input data (number of molecules) varying from 4K to 32K
on the Intel multi-core cluster, with 6 threads per place and
total 4 places. ADS incurs around 15× increase in time with
8× increase in data. The reason for this increase is that as
the number of molecules increases per region the number
of force calculations increases more than linearly. The same
pattern is observed for Custom, 68× increase in time, with
8× increase in the number of molecules. Further, ADS per-
formance is within 50% of the performance of Custom even
for large number of molecules, 32K. Note that this gap in
performance is much lower at 16K molecules but suddenly
jumps at 32K molecules due to increase in scheduling over-
heads.

5.2 Performance Comparison on Intel NUMA
Architecture

The performance comparison between ADS and CORG was
done on Intel multi-core platform. This platform has 16
cores (2.93 GHz, intel Xeon 5570, Nehalem architecture)
with 8MB L3 cache per chip and around 64GB memory.
Intel Xeon 5570 has NUMA characteristics even though
it exposes SMP style programming. Fig. 16 compares the
performance for the Heat benchmark (matrix: 32K ∗ 4K,
number of iterations = 100, leafmaxcol = 32). Both ADS
and CORG demonstrate strong scalability. Initially, ADS is

23

Weak Scalability (MD): ADS vs Custom (BG/P)

0

5

10

15

20

25

64 128 192 256

Number of Places

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 11. MD: Weak Scalability (BG/P)

Data Scalability (MD): ADS vs Custom (BG/P)

0

1

2

3

4

5

6

7

8

8K 16K 24K 32K

Number of Molecules

To
ta

l T
im

e
(s

)

Custom

ADS

Figure 12. MD: Data Scalability (BG/P)

Strong Scalability (MD): ADS vs Custom (Intel Cluster)

0

200

400

600

800

1000

1200

4 6 8 12 16 24

Total Number of Cores

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 13. MD: Strong Scalability (Intel Cluster)

Weak Scalability (MD): ADS vs Custom (Intel Cluster)

0

20

40

60

80

100

120

140

4 6 8 9 12

Total Number of Cores

T
o

ta
l

T
im

e
(s

)

Custom

ADS

Figure 14. MD: Weak Scalability (Intel Cluster)

Data Scalability (MD): ADS vs Custom (Intel Cluster)

0

50

100

150

200

250

300

4K 8K 12K 16K 32K

Number of Molecules

T
o

ta
l

T
im

e
(s

)
Custom

ADS

Figure 15. MD: Data Scalability (Intel Cluster)

around 1.9× better than CORG, but later this gap stabilizes
at around 1.20×.

5.3 Detailed Performance Analysis

In this section, we analyze the performance gains obtained
by our ADS algorithm vs. the Cilk style scheduling (CWS)
algorithm and also investigate the behavior of our algorithm
on Power6 multi-core architecture.

Fig. 17 demonstrates the gain in performance of ADS vs
CWS with 16 cores. For CG, Class B matrix is chosen with
parameters: NA = 75K, Non-Zero = 13M , Outer iterations
= 75, SHIFT = 60. For Heat, the parameters values chosen
are: matrix size = 32 ∗ 4K, number of iterations = 100 and
leafmaxcol = 32. While CG has maximum gain of 30%, MD
shows gain of 16%. Fig. 18 demonstrates the overheads due
to work stealing and FAB stealing in ADS and CWS. ADS has
lower work stealing overhead because the work stealing hap-
pens only within a place. For CG, work steal time for ADS
(5s) is 3.74× better than CWS (18.7s). For Heat and MD,
ADS work steal time is 4.1× and 2.8× better respectively,
as compared to CWS. ADS has FAB overheads but this time

24

Strong Scalability Comparison: ADS vs CORG

0

500

1000

1500

2000

Number of Cores

To
ta

l T
im

e
(s

)

CORG

ADS

CORG 1623 812 415 244

ADS 859 683 348 195

2 4 8 16

Figure 16. CORG vs ADS

Performance Comparison: ADS vs CWS

0

10

20

30

40

50

Benchmarks

T
ot

al
 T

im
e

(s
)

CWS

ADS

CWS 45.7 12.2 10.6

ADS 31.9 9.8 8.9

CG Heat MD

Figure 17. ADS vs CWS

WS & FAB Overheads: ADS vs CWS

0
2
4
6
8

10
12
14
16
18
20

CG Heat MD

Benchmarks

T
im

e
(s

) CWS_WS_time

ADS_WS_time

ADS_Fab_Overhead

Figure 18. ADS vs CWS

is very small, around 13% to 22% of the corresponding work
steal time. CWS has higher work stealing overhead because
the work stealing happens from any place to any other place.
Hence, the NUMA delays add up to give a larger work steal
time. This demonstrates the superior execution efficiency of
our algorithm over CWS.

We measured the detailed characteristics of our schedul-
ing algorithm on multi-core Power6 platform. This has 16
Power6 cores and total 128GB memory. Each core has
64KB instruction L1 cache and 64KB L1 data cache along
with 4MB semi-private unified L2 cache. Two cores on a
Power6 chip share an external 32MB L3 cache. Fig. 19
plots the variation of the work stealing time, the FAB steal-
ing time and the total time with changing configurations of
a multi-place setup, for MD benchmark. With constant to-
tal number of cores = 16, the configurations, in the format
(number of places * number of processors per place), chosen
are: (a) (16∗1), (b) (8∗2), (c) (4∗4), and (d) (2∗8). As the
number of places increase from 2 to 8, the work steal time
increases from 3.5s to 80s as the average number of work
steal attempts increases from 140K to 4M . For 16 places,
the work steal time falls to 0 as here there is only a single
processor per place, so work stealing does not happen. The
FAB steal time, however, increases monotonically from 0.3s
for 2 places, to 110s for 16 places. In the (16 ∗ 1) config-
uration, the processor at a place gets activities to execute,
only through remote push onto its place.Hence, the FAB
steal time at the place becomes high, as the number of FAB
attempts (300M average) is very large, while the successful
FAB attempts are very low (1400 average). With increasing
number of places from 2 to 16, the total time increases from
189s to 425s, due to increase in work stealing and/or FAB
steal overheads.

Fig. 20 plots the work stealing time and FAB stealing time
variation with changing multi-place configurations for the
CG benchmark (using Class C matrix with parameter values:
NA = 150K, Non-Zero = 13M , Outer Iterations = 75 and
SHIFT = 60). In this case, the work steal time increases from
12.1s (for (2 ∗ 8)) to 13.1 (for (8 ∗ 2)) and then falls to 0
for (16 ∗ 1) configuration. The FAB time initially increases
slowly from 3.6s to 4.1s but then jumps to 81s for (16 ∗ 1)
configuration. This behavior can be explained as in the case
of MD benchmark (above).

Fig. 21 plots the work stealing time and FAB stealing
time variation with changing multi-place configurations for
the Heat benchmark (using parameter values: matrix size
= 64K ∗ 8K, Iterations = 100 and leafmaxcol = 32). The
variation of work stealing time, FAB stealing time and total
time follow the pattern as in the case of MD.

Fig. 22 gives the variation (for MD benchmark) of the
Ready Deque average space and maximum space consump-
tion across all processors and FAB average space and maxi-
mum space consumption across places, with changing con-
figurations of the multi-place setup. As the number of places

25

WS & FAB Overheads Variation: MD

0

50

100

150

200

250

300

350

400

450

(2 * 8) (4 * 4) (8 * 2) (16 * 1)

(Num Places * Num Procs Per Place)

T
im

e
(s

) ADS_WS_time

ADS_FAB_time

ADS_Total_Time

Figure 19. Overheads - MD

WS & FAB Overheads Variation: CG

0

50

100

150

200

250

300

350

(2 * 8) (4 * 4) (8 * 2) (16 * 1)

(Num Places * Num Procs Per Place)

Ti
m

e
(s

) ADS_WS_time

ADS_FAB_time

ADS_Total_Time

Figure 20. Overheads - CG

WS & FAB Overheads Variation: Heat

0

50

100

150

200

250

300

350

(2 * 8) (4 * 4) (8 * 2) (16 * 1)

(Num Places * Num Procs Per Place)

Ti
m

e
(s

) ADS_WS_time

ADS_FAB_time

ADS_Total_Time

Figure 21. Overheads - HEAT

Ready Deque & FAB Space Variation: MD

0

2

4

6

8

10

12

14

(2 * 8) (4 * 4) (8 * 2) (16 * 1)

(Num Places * Num Procs Per Place)

N
um

be
r

of
 S

ta
ck

 F
ra

m
es

Ready_Deque_Avg

Ready_Deque_Max

FAB_Avg

FAB_Max

Figure 22. Space Util - MD

increase from 2 to 16, the FAB average space increase from
4 to 7 stack frames first, and, then decreases to 6.4 stack
frames. The maximum FAB space usage increases from 7 to
9 stack frames but then returns back to 7 stack frames. The
average Ready Deque space consumption increases from 11
stack frames to 12 stack frames but returns back to 9 stack
frames for 16 places, while the average Ready Deque mono-
tonically decreases from 9.69 to 8 stack frames. The Dmax

for this benchmark setup is 11 stack frames, which leads
to 81% maximum FAB utilization and roughly 109% Ready
Deque utilization.

Fig. 24 gives the variation of FAB space and Ready Deque
space with changing configurations, for CG benchmark
(Dmax = 13). Here, the FAB utilization is very low and
remains so with varying configurations. The Ready Deque
utilization stays close to 100% with varying configurations.
Fig. 23 gives the variation of FAB space and Ready Deque
space with changing configurations, for Heat benchmark
(Dmax = 12). Here, the FAB utilization is high (close to
100%) and remains so with varying configurations. The
Ready Deque utilization also stays close to 100% with vary-
ing configurations. This empirically demonstrates that our
distributed scheduling algorithm has efficient space utiliza-
tion as well.

6. Conclusions & Future Work
We have addressed the challenging problem of multi-objective
affinity driven online distributed scheduling of parallel com-
putations. We have provided detailed theoretical analysis
of the time and message complexity bounds of our algo-
rithm. On multi-core clusters including Blue Gene/P (MPP
architecture) and Intel multi-core cluster, we have shown
performance close to custom MPI+Pthreads code. Fur-
ther, strong, weak and data scalability have been demon-
strated in multi-core clusters. Using well known bench-
marks, on Intel NUMA architecture, our algorithm demon-
strates around 16% to 30% performance gain over typical
Cilk style scheduling. Detailed experimental analysis il-
lustrates the efficient space utilization as well. This is the

26

Ready Deque & FAB Space Variation: Heat

0

2

4

6

8

10

12

14

16

(2 * 8) (4 * 4) (8 * 2) (16 * 1)

(Num Places * Num Procs Per Place)

N
u

m
be

r
o

f S
ta

ck
 F

ra
m

es

Ready_Deque_Avg

Ready_Deque_Max

FAB_Avg

FAB_Max

Figure 23. Space Util - HEAT

Ready Deque & FAB Space Variation: CG

0

2

4

6

8

10

12

14

16

(2 * 8) (4 * 4) (8 * 2) (16 * 1)

(Num Places * Num Procs Per Place)

N
um

be
r

of
 S

ta
ck

 F
ra

m
es

Ready_Deque_Avg

Ready_Deque_Max

FAB_Avg

FAB_Max

Figure 24. Space Util - CG

first such work for multi-objective affinity driven online
distributed scheduling of parallel computations in a multi-
place setup. In future, we plan to look into detailed space-
time tradeoffs and markov-chain based modeling of the dis-
tributed scheduling algorithm.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The

data locality of work stealing. In SPAA, pages 1 – 12, New
York, NY, USA, December 2000.

[2] S. Agarwal, R.Barik, D. Bonachea, V. Sarkar, R. K. Shyama-
sundar, and K. Yellick. Deadlock-free scheduling of x10 com-
putations with bounded resources. In SPAA, pages 229 – 240,
San Diego, CA, USA, December 2007.

[3] Eric Allan, David Chase, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-
Hochstadt. The Fortress language specification version 0.618.
Technical report, Sun Microsystems, apr 2005.

[4] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton.
Thread scheduling for multiprogrammed multiprocessors. In
SPAA, pages 119 – 129, Puerto Vallarta, Mexico, 1998.

[5] P. Berenbrink, T. Friedetzky, and L.A. Goldberg. A natu-
ral work-stealing algorithm is stable. In Proceedings of the

42th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 178 – 187, 2001.

[6] Robert D. Blumofe and Charles E. Leiserson. Schedul-
ing multithreaded computations by work stealing. J. ACM,
46(5):720–748, 1999.

[7] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and
reliable parallel computing on networks of workstations. In
USENIX Annual Technical Conference, Anaheim, California,
1997.

[8] Bradford L. ChamberLain, David Callahan, and Hans P. Zima.
Parallel Programmability and the Chapel Language. Interna-
tional Journal of High Performance Computing Applications,
21(3):291 – 312, August 2007.

[9] Philippe Charles, Christopher Donawa, Kemal Ebcioglu,
Christian Grothoff, Allan Kielstra, Christoph von Praun, Vi-
jay Saraswat, and Vivek Sarkar. X10: An object-oriented ap-
proach to non-uniform cluster computing. In OOPSLA 2005
Onward! Track, 2005.

[10] Exascale Study Group and Peter Kogge et.al. Exascale com-
puting study: Technology challenges in achieving exascale
systems. Technical report, Sep 2008.

[11] A. Narang, A. Srivastava, Naga P.K. Katta, and R. K. Shyama-
sundar. Affinity driven distributed scheduling algorithm for
parallel computations. In ICDCN, Bangalore, India, January
2011.

[12] Marc Tchiboukdjian, Nicolas Gast, Denis Trystram, Jean-
Louis Roch, and Julien Bernard. A tighter analysis of work
stealing. In ISAAC (2), pages 291–302, 2010.

[13] Katherine Yelick and Dan Bonachea et.al. Productivity
and performance using partitioned global address space lan-
guages. In PASCO ’07: Proceedings of the 2007 interna-
tional workshop on Parallel symbolic computation, pages 24–
32, New York, NY, USA, 2007. ACM.

27

