
In-band Network Telemetry via Programmable Dataplanes

Changhoon Kim*, Anirudh Sivaraman**, Naga Katta***, Antonin Bas*, Advait Dixit*, Lawrence J Wobker*
*Barefoot Networks, **Massachusetts Institute of Technology, ***Princeton University

{chang, antonin, adixit, ljw}@barefootnetworks.com, anirudh@csail.mit.edu, nkatta@cs.princeton.edu

ABSTRACT
In-band Network Telemetry (INT) is a new abstraction that
allows data packets to query switch-internal state such as
queue size, link utilization, and queuing latency. We proto-
type INT in the recently proposed P4 language using a soft-
ware switch as the implementation platform. We then show
how INT can be used to diagnose performance problems such
as intermittent latency spikes. Instructions to replicate our
demo are available at http://git.io/sosr15-int-demo

CCS Concepts
•Networks → Programmable networks;

Keywords
Programmable forwarding planes; network debugging

1. IN-BAND NETWORK TELEMETRY
Software-Defined Networking (SDN) has been successful

because it lets network owners and operators “program” net-
work behavior. SDN’s programmability, however, is con-
fined to the network control plane today. The forwarding
plane is still largely dictated by fixed-function switching
chips. Our goal is to change that, and to allow program-
mers to define how packets are to be processed all the way
down to the wire. This is made possible by a new gener-
ation of high-performance forwarding chips. At the high-
end, new programmable protocol-independent switch chips
promise multi-Tb/s of packet processing [6, 4, 2]. At the
mid- and low-end of the performance spectrum, CPUs [7],
GPUs [8], FPGAs [1], and NPUs [3] already offer great flex-
ibility with performance of a few tens to hundreds of Gb/s.

In addition to programmable forwarding chips, we need a
high-level language to dictate the forwarding behavior in a
target-independent fashion. “P4” [5] (www.p4.org) is such a
language. In P4, the programmer declares how packets are
to be processed, and a compiler generates a configuration for
a protocol-independent switch chip or NIC. For example, the
programmer might program the switch to be a top-of-rack
switch, a firewall, or a load-balancer, and might add features
to run automatic diagnostics and novel congestion-control
algorithms.

In this demo, we will give a brief primer on the P4 lan-
guage by showing and compiling some example P4 programs
to derive various network dataplane personalities, demon-
strating the power of writing portable and reusable P4 pro-
grams. Then, we will demonstrate INT (In-band Network
Telemetry), a powerful new network-diagnostics mechanism

Figure 1: Work flow to compile P4 programs

implemented in P4, inspired by a recent research idea propos-
ing simple and programmable access to switch-internal state [9].
Because INT is implemented in P4, it is runnable on a vari-
ety of programmable network devices. With INT, a network
owner will be able to debug and root-cause various network
incidents rapidly and intuitively. Instructions to replicate
our demo are available at http://git.io/sosr15-int-demo

2. DESCRIPTION OF DEMO
We provide an overview of our demo in stages. First, we

compile a specific P4 program to each software switch in
the topology shown in Figure 2. Then, we setup a periodic
HTTP transfer to continuously monitor end-to-end latency.
Lastly, we use INT to diagnose the root cause of occasional
latency spikes in HTTP transfer latencies.

2.1 P4 development environment
We use the open source P4 switch model available at https:

//github.com/p4lang/p4factory to create each P4 switch in
the topology (Figure 2). Each software switch performs
the match-action pipeline processing described by a P4 pro-
gram. Each software switch also has a control channel that
allows the controller to insert, delete, and modify entries in
the match-action tables. These APIs are generated auto-
matically by the P4 compiler and provide hooks to perform
run-time tasks, such as inserting and removing routes. Our
demonstration uses the Mininet [10] environment to route
traffic between a number of software P4 switches in a spe-
cific topology (Figure 2).

2.2 Continuous HTTP Latency plot

http://git.io/sosr15-int-demo
www.p4.org
http://git.io/sosr15-int-demo
https://github.com/p4lang/p4factory
https://github.com/p4lang/p4factory

Figure 2: Topology of the experiment with instanta-
neous throughputs. h1 responds to periodic HTTP
requests from h3; h2 occasionally sends a burst of
traffic to h3 that interferes with h1’s traffic to h3.

Figure 3: HTTP GET latency time series

Figure 4: Scatter plot of latency at each switch

We generate a HTTP latency plot (Figure 3) using a con-
stantly looping web request. In the topology, h3 periodically
requests a web page from h1 and plots the time it takes to
return the page. Periodically, a UDP flow transfers a burst

of data from h2 to h3 on the shared path through sw3. This
conflict causes latency spikes on the plot.

2.3 Understanding HTTP latency spikes
Each switch in our network uses INT to push telemetry

packets periodically that contain the switch ID, as well as
the time actually spent in the switch queue into the TCP
options field of data packets. When these packets are re-
ceived at the end host, this data (Figure 4) provides a nearly
instantaneous observation of which switch is responsible for
the additional latency in the system. Once we have localized
the switch with a large queue occupancy (in this case switch
3), we can take further corrective action, such as inspecting
what other flows are sharing the same queue on that switch.

3. REFERENCES
[1] The Arista 7124 FX as a High Performance Trade

Execution Platform. http://www.argondesign.com/
media/uploads/files/P8006-R-001d The Arista FX
Switch as an Execution Platform.pdf.

[2] Intel FlexPipe. http://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
ethernet-switch-fm6000-series-brief.pdf.

[3] IXP4XX Product Line of Network Processors.
http://www.intel.com/content/www/us/en/
intelligent-systems/previous-generation/
intel-ixp4xx-intel-network-processor-product-line.
html.

[4] XPliant™Ethernet Switch Product Family.
http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.html.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet
Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[6] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN. In
SIGCOMM, 2013.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism to
Scale Software Routers. In SOSP, 2009.

[8] S. Han, K. Jang, K. Park, and S. Moon.
PacketShader: A GPU-accelerated Software Router.
In SIGCOMM, 2010.

[9] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of Little Minions: Using Packets
for Low Latency Network Programming and Visibility.
In SIGCOMM, 2014.

[10] B. Lantz, B. Heller, and N. McKeown. A Network in a
Laptop: Rapid Prototyping for Software-defined
Networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

http://www.argondesign.com/media/uploads/files/P8006-R-001d_The_Arista_FX_Switch_as_an_Execution_Platform.pdf
http://www.argondesign.com/media/uploads/files/P8006-R-001d_The_Arista_FX_Switch_as_an_Execution_Platform.pdf
http://www.argondesign.com/media/uploads/files/P8006-R-001d_The_Arista_FX_Switch_as_an_Execution_Platform.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

	In-band Network Telemetry
	Description of demo
	P4 development environment
	Continuous HTTP Latency plot
	Understanding HTTP latency spikes

	References

