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Abstract—Big data analytics is a hot research area both in
academia and industry. It envisages processing massive amounts
of data at high rates to generate new insights leading to positive
impact (for both users and providers) of industries such as E-
commerce, Telecom, Finance, Life Sciences and so forth. We con-
sider collaborative filtering (CF) and Clustering algorithms that
are key fundamental analytics kernels that help in achieving these
aims. High throughput CF and co-clustering on highly sparse
and massive datasets, along with a high prediction accuracy, is a
computationally challenging problem. In this paper, we present a
novel hierarchical design for soft real-time (less than 1 minute.)
distributed co-clustering based collaborative filtering algorithm.
We study both the online and offline variants of this algorithm.
Theoretical analysis of the time complexity of our algorithm
proves the efficacy of our approach. Further, we present the
impact of load balancing based optimizations on multi-core
cluster architectures. Using the Netflix dataset(900M training
ratings with replication) as well as the Yahoo KDD Cup(2.3B
training ratings with replication) datasets , we demonstrate
the performance and scalability of our algorithm on a large
multi-core cluster architecture. In offline mode, our distributed
algorithm demonstrates around 4× better performance (on Blue
Gene/P) as compared to the best prior work, along with high
accuracy. In online mode, we demonstrated around 3× better
performance compared to baseline MPI implementation. To the
best of our knowledge, our algorithm provides the best known
online and offline performance and scalability results with high
accuracy on multi-core cluster architectures.

I. INTRODUCTION

Collaborative filtering (CF) is a subfield of machine learn-
ing that aims at creating algorithms to predict user prefer-
ences based on past user behavior in purchasing or rating
of items [1], [2]. Here, the input is a set of known item
preferences per user, typically in the form of a user-item rat-
ings matrix. This user-item ratings matrix is typically sparse.
The collaborative filtering problem is to find the unknown
preferences of a user for a specific item, i.e. an unknown
entry in the ratings matrix, using the underlying collaborative
behavior of the user-item preferences. Collaborative filtering
based recommender systems are very important in e-commerce
applications. They help people more easily find items that they
would like to purchase [3]. This enhances the user experience
which typically leads to improvements in sales and revenue.
Further, scientific disciplines such as Computational Biology
and Personalized medicine (risk stratification) stand to gain
immensely from CF [4], [5]. CF systems are also increasingly
important in dealing with information overload since they can
lead users to information that others like them have found
useful. With massive amounts of data (terabytes to petabytes)
and high data rates in Telecom (around 6B Call Data Records
per day), Finance and other industries, there is a strong need to
deliver soft real-time training for CF as it will lead to further
enhance the quality of experience of customers along with

increase in revenue for the provider.
Typical approaches for CF include matrix factorization

based techniques, correlation based techniques , co-clustering
based techniques, and concept decomposition based tech-
niques [6]. Matrix factorization [7] and correlation [8] based
techniques are computationally expensive hence cannot deliver
soft real-time CF. Further, in matrix factorization based ap-
proaches, updates to the input ratings matrix leads to non-local
changes which leads to higher computational cost for online
CF. Concept Decomposition based technique [6] perform
spherical k-means followed by least-squares based approxima-
tion of the original matrix. This work presents only sequential
performance (13.5 minutes) for training of the full Netflix
dataset which is far from being considered soft real-time. Co-
clustering based techniques [9], [10] have better scalability
but have not been optimized to deliver high throughput on
massive data sets. Daruru et al. in [10] presented dataflow
parallelism based co-clustering implementation which did not
scale beyond 8 cores due to cache miss and in-memory lookup
overheads. CF over highly sparse data sets leads to lower
compute utilization due to load imbalance. For large scale dis-
tributed environment (256 nodes and beyond), load imbalance
can dominate the overall performance and the communication
cost becomes worse with increasing size of the cluster, leading
to performance degradation. Thus, high computational demand
and low parallel efficiency due to cache misses and load
imbalance are the key challenges that need to be addressed
to achieve high throughput distributed collaborative filtering
on highly sparse massive data sets.

In order to optimize the parallel performance, achieve high
parallel efficiency and give soft-real time (1̃min) guarantees on
massive datasets, we designed a novel hierarchical approach
for distributed co-clustering. Specifically, this paper makes the
following key contributions:

• We present a novel distributed hierarchical approach for
both offline and online co-clustering based collabora-
tive filtering. Performance optimizations including load
balancing and computation communication overlap have
been incorporated for high throughput and soft real-time
(less than 1 min.) performance over highly sparse massive
data-sets.

• Analytical parallel time complexity analysis, establishes
theoretically that our hierarchical design leads to perfor-
mance gain of order O(log(π)) (where π is number of
row and column partitions of the input matrix) over the
best prior approach [11].

• We demonstrate soft real-time performance for both of-
fline and online mode collaborative filtering using the
Netflix Prize and Yahoo KDD Cup datasets on a 4096-
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node multi-core cluster architecture (Blue Gene/P 1).
For offline mode, we achieved a training time (using I-
divergence and C6, Section III) of around 9.38s with
the full Netflix dataset and prediction time of 2.8s on
1.4M ratings with RMSE (Root Mean Square Error)
of 0.87 ± 0.02. This is around 4× better than the best
prior distributed algorithm [11] for the same dataset. For
900M ratings using Netflix dataset and 2.3B ratings
using Yahoo KDD Cup dataset, we show soft real-time
performance along with high accuracy. For online mode,
our algorithm delivers around 3× better performance
compared to baseline MPI implementation.

II. RELATED WORK

Co-clustering and collaborative filtering (CF) are funda-
mental data-mining kernels used in many application domains
such as Information Retrieval [12], Telecom [13], Financial
markets, Life Sciences [4]. Hassan et al. in [5] evaluate the
context of a specific clinical challenge, i.e., risk stratification
following acute coronary syndrome (ACS). On over 4,500
patients, this research shows that CF outperforms traditional
classification methods such as logistic regression (LR) and
support vector machines (SVMs) for predicting both sudden
cardiac death and recurrent myocardial infarction within one
year of the index event.

Banerjee et al. in [14] consider multiway-clustering of
a single tensor or a group of tensors over heterogeneous
relational data, using Bregman (Bregman divergence models
a broad family of information loss functions that includes
squared Euclidean distance, KL-divergence, I-divergence) co-
clustering based alternate minimization algorithm and shows
its advantages in the domains of social networks, e-commerce
using movie recommendation data as well as newsgroup ar-
ticles. We optimize the Bregman co-clustering algorithm [15]
(based on alternate minimization) for distributed systems. Our
novel hierarchical approach will also improve the distributed
performance of the multi-way clustering algorithm over het-
erogeneous relational tensor data.

Typical CF techniques are based on correlation criteria [8]
and matrix factorization [7]. The correlation-based techniques
use similarity measures such as Pearson correlation and cosine
similarity to determine a neighborhood of like-minded users
for each user and then predict the user’s rating for a product as
a weighted average of ratings of the neighbors. Correlation-
based techniques are computationally very expensive as the
correlation between every pair of users needs to be com-
puted during the training phase. Further, they have much
reduced coverage since they cannot detect item synonymy.
The matrix factorization approaches include Singular Value
Decomposition (SVD [16]) and Non-Negative Matrix Factor-
ization (NNMF) based [7] filtering techniques. They predict
the unknown ratings based on a low rank approximation
of the original ratings matrix. The missing values in the
original matrix are filled using average values of the rows or
columns. However, the training component of these techniques
is computationally intensive, which makes them impractical to
have frequent re-training. Incremental versions of SVD based
on folding-in and exact rank-1 updates [17] partially alleviate
this problem. But, since the effects of small updates are not
localized, the update operations are not very efficient.

George et al in [9] studies a special case of the weighted
Bregman co-clustering algorithm. The co-clustering problem

1www.ibm.com/bluegene

is formulated as a matrix approximation problem with non-
uniform weights on the input matrix elements. As in the case
of SVD and NNMF, the co-clustering algorithm also optimizes
the approximation error of a low parameter reconstruction
of the ratings matrix. However, unlike SVD and NNMF, the
effects of changes in the ratings matrix are localized which
makes it possible to have efficient incremental updates. This
work presents parallel algorithm design based on co-clustering.
It compares the performance of the algorithm against ma-
trix factorization and correlation based approaches on the
MovieLens 2 and BookCrossing dataset [18] (269392 explicit
rating(1-10) from 47034 users on 133438 books). We consider
soft real-time CF framework using hierarchical parallel co-
clustering optimized for multi-core clusters using pipelined
parallelism and computation communication overlap. We de-
liver scalable performance over much large data on multicore
clusters.

Daruru et al. in [10] use a dataflow parallelism based
framework to study performance vs. accuracy trade-offs of co-
clustering based CF. However, it doesn’t consider re-training
time for incremental input changes. Further, the parallel im-
plementation does not scale well beyond 8 cores due to
cache miss and in-memory lookup overheads. We demonstrate
parallel scalable performance on 4096 nodes of Blue Gene/P
and 7× to 10× better training time and better prediction time.
Further, while none of the prior work aims at massive scale
performance, we provide theoretical and empirical analysis
to demonstrate this scale of performance of our distributed
algorithm. Hsu et al.in [19] study IO scalable co-clustering
by mapping a significant fraction of computations performed
by the Bregman co-clustering algorithm to an on-line analyt-
ical processing (OLAP) engine. Kwon et al. in [20] study
the scalability of basic MPI based implementation of co-
clustering. We deliver more than one order of magnitude
higher performance compared to this work, by performing
communication and load balancing optimizations along with
novel hierarchical design for multi-core clusters.

Ampazis in [6] presents results of collaborative filtering
using Concept decomposition based approach. It has been
empirically established by Dhillon et al. in [21] that the
approximation power (when measured using the Frobenius
norm) of concept decompositions is comparable to the
best possible approximations by truncated SVDs [22].
However,this paper presents the results of a sequential
concept decomposition based algorithm that takes 13.5mins.
training time for the full Netflix data, which is very high
when looking at soft real-time performance. Narang et al.
in [23] presents a parallel CF algorithm using concept
decomposition on 32-code SMP architecture. It achieves
64s total training time for Netflix data. Using multi-
core clusters, we deliver around two order of magnitude
improvement in training time compared to the sequential
concept decomposition technique [6] and around one of
magnitude improvement compared to the parallel concept
decomposition technique [23]. Narang et al. [11] presents
a flat distributed co-clustering algorithm where all the
processors in the system participate in each iteration of the
co-clustering algorithm, and both OpenMP and MPI (hybrid
approach) are used to exploit both intra-node and inter-node
parallelism available in Blue Gene/P. Using the Netflix
dataset (100M ratings), it demonstrates the performance

2http://www.grouplens.org/data/. 100K ratings(1-5) 943 users, 1682 movies
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and scalability of the algorithm on 1024-node Blue Gene/P
system: with training time of around 6s on the full Netflix
dataset (with Euclidean-divergence).In this paper, we present
a hierarchical approach for distributed co-clustering along
with load balancing optimizations leading to around average
4× improvement in performance as compared to [11] on
Yahoo KDD Cup and Netflix datasets. Theoretical analysis of
our hierarchical algorithm firmly establishes the performance
gain of O(log(π)) (where, π is the number of partitions of
rows and columns of the input matrix) as compared to the flat
algorithm in [11]. Further, we present detailed performance
comparison with much larger data as compared to [11].

III. BACKGROUND AND NOTATION

In this paper, we deal with partitional co-clustering where
all the rows and columns are partitioned into disjoint row and
column clusters respectively. We consider a general framework
for addressing this problem that considerably expands the
scope and applicability of the co-clustering methodology. As
part of this generalization, we view partitional co-clustering
as a lossy data compression problem [15] where, given a
specified number of rows and column clusters, one attempts to
retain as much information as possible about the original data
matrix in terms of statistics based on the co-clustering [24].
The main idea is that a reconstruction based on co-clustering
should result in the same set of user-specified statistics as the
original matrix.

Let k and l be the number of row and column clusters
respectively then a k ∗ l partitional co-clustering is defined as
a pair of functions:
ρ : 1, . . . ,m �−→ 1, ..., k; and, γ : 1, . . . , n �−→ 1, ..., l. Let
Û and V̂ be random variables that take values in 1, ..., k
and 1, ..., l such that Û = ρ(U) and V̂ = γ(V ). Let,
Ẑ = [ẑuv] ∈ Sm×n be an approximation of the data matrix Z
such that Ẑ depends only upon a given co-clustering (ρ, γ) and
certain summary statistics derived from co-clustering. Let Ẑ be
a (U,V)-measurable random variable that takes values in this
approximate matrix Ẑ following w, i.e., p(Ẑ(U, V ) = ẑuv) =
wuv . Then, the goodness of the underlying co-clustering can
be measured in terms of the expected distortion between Z
and Ẑ, that is,

E[dφ(Z, Ẑ)] =

m∑

u=1

n∑

v=1

wuvdφ(zuv, ẑuv) = dΦw
(Z, Ẑ) (1)

where Φw : Sm×n �−→ R is a is a separable convex function
induced on the matrices such that the Bregman divergence
(dΦ()) between any pair of matrices is the weighted sum of
the element-wise Bregman divergences corresponding to the
convex function φ. From the matrix approximation viewpoint,
the above quantity is simply the weighted element-wise dis-
tortion between the given matrix Z and the approximation Ẑ.
The co-clustering problem is then to find (ρ, γ) such that (1)
is minimized.

Now we consider two important convex functions that
satisfy the Bregman divergence criteria and are hence studied
in this paper.

• I-Divergence : Given z ∈ R+, let φ(z) = zlogz − z.
For z1, z2 ∈ R, dφ(z1, z2) = z1log(z1/z2)− (z1 − z2).

• Squared Euclidean distance : Given z ∈ R, let
φ(z) = z2. For z1, z2 ∈ R, dφ(z1, z2) = (z1 − z2)

2.

Given a co-clustering (ρ, γ), Banerjee et al. [15] discuss six
co-clustering bases where each co-clustering basis preserves
certain summary statistics on the original matrix. It also
proves that the possible co-clustering bases (C1 . . . C6) form a
hierarchical order in the number of cluster summary statistics
they preserve. The co-clustering basis C6 preserves all the
summaries preserved by the other co-clustering bases and
hence is considered the most general among the bases. In
this paper we discuss the partitioning co-cluster algorithms
for the basis C6. For co-clustering basis C6 and Euclidean-
divergence objective, the matrix approximation is given by:

Âij = ACOC
gh + (ACC

ih − ARC
gj ), where, ARC

gj =
SRC
gj

WRC
gj

=
∑

i′|ρ(i′)=g Ai′j∑
i′|ρ(i′)=g Wi′j

; ACC
ih =

SCC
ih

WCC
ih

=
∑

j′|γ(j′)=h Aij′∑
j′|γ(j′)=h Wij′

and

ACOC
gh =

SCOC
gh

WCOC
gh

=
∑

i′|ρ(i′)=g

∑
j′|γ(j′)=h Ai′j′∑

i′|ρ(i′)=g

∑
j′|γ(j′)=h Wi′j′

.

The sequential update algorithm for the basis C6
is as shown in Algorithm 1 where the approximation
matrix Â for various co-clustering bases can be obtained
from [15]. For Euclidean divergence, Step 2b. and 2c.
of Algorithm 1 use dφ(Aij , Âij) = (Aij − Âij)

2.
For I-divergence, Step 2b. and 2c. of Algorithm 1 use
dφ(Aij , Âij) = Aij ∗ log(Âij/Aij)−Aij + Âij

Algorithm 1 Sequential Static Training via Co-Clustering
Input: Ratings Matrix A, Non-zeros matrix W , No. of row

clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages

ACOC ,ARC ,ACC ,AR and AC .
Method:
1. Randomly initialize (ρ,γ)
while RMSE value is converging do

2a. Compute averages ACOC ,ARC
gj ,ACC

ih ,AR and AC

where 1 ≤ g ≤ k and 1 ≤ h ≤ l.
2b. Update row cluster assignments
ρ(i) = argmin

1≤g≤k

∑n

j=1 Wijdφ(Aij , Âij), 1 ≤ i ≤ m

2c. Update column cluster assignments
γ(i) = argmin

1≤h≤l

∑m
i=1 Wijdφ(Aij , Âij), 1 ≤ j ≤ n

end

A. Distributed Flat Coclustering Algorithm
In the above sequential algorithm (Algorithm 1), we notice

two important steps - a) Calculating the matrix averages, and,
b) updating the row and column cluster assignments. Further,
given the matrix averages, row and column cluster updates
can be done independently, and row updates themselves can
be done in parallel.The flat distributed algorithm [11] leverages
this inherent data parallelism. As one can see, this algo-
rithm needs three MPI collectives calls: 1) To communicate
Row/Column memberships, 2) To communicate Row/Column
cluster averages and 3) To communicate cocluster averages.
Since, the input ratings matrix is uniformly partitioned across
all available processors, the algorithm can support very large
matrices and hence has strong memory scalability. However, as
the number of processor increases the collectives across all the
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processors can become a bottleneck to the strong scalability
for performance. In this paper we consider a hierarchical
algorithm which reduces both communication and computa-
tion cost on multi-core cluster architecture while maintaining
similar accuracy.

IV. HIERARCHICAL COCLUSTERING ALGORITHM

In this section, we present the detailed algorithmic design
of our novel hierarchical co-clustering algorithm. The original
input (users*items) ratings matrix is divided into certain num-
ber of row and column partitions. Each partition is assigned
to a set of nodes in the cluster architecture. The hierarchical
algorithm runs from bottom to top along a computation tree
(Fig. 2) as follows. First, flat parallel co-clustering is run in
each partition independently. The number of row and column
clusters chosen is smaller compared to that specified in the
input. Then, for each partition, the row and column clusters
generated are merged with the adjacent partition. This gives
the next level row and column clusters. At this higher level,
flat parallel co-clustering is then run independently in each
partition. Then again, the resulting row and column clusters
at this level are merged to generate the next higher level row
and column clusters. This forms a computation tree (Fig. 2)
of execution. The alternate flat co-clustering and row/column
cluster merge continue up the computation tree until the full
matrix is obtained as a single partition (at the highest level
in the tree) and finally flat parallel co-clustering is run here
with the number of row and column clusters as specified in
the input.

This hierarchical design helps in improving the overall time
of the co-clustering algorithm without loss in accuracy of CF.
At the lower levels of the computation tree, faster co-clustering
iterations with smaller number of row and column clusters
take place. This reduces the computation time. Moreover, MPI
collectives like MPI Allreduce and MPI Allgather are usually
costly in nature when used over large number of nodes in the
system (as in the flat algorithm [11]). However, in the hier-
archical algorithm, these collectives occur in smaller subsets
of nodes (smaller communication topologies) and hence the
communication cost is reduced. Thus, the hierarchical design
results in lower computation as well as communication time.
Further, row and column clusters at one level, after merge,
result in good quality seed clusters for co-clustering at the
next level. So, in the same number of iterations as a pure flat
co-clustering algorithm [11], one can converge to similar high
quality co-clustering for the hierarchical algorithm. Hence,
the hierarchical algorithm provides a better trade-off point for
speed vs accuracy as compared to the flat algorithm.

Fig. 1 and Fig. 2 illustrate the hierarchical algorithm in
detail. Here, the input ratings matrix A is partitioned into
4 ∗ 4 = 16 partitions (πr = 4, πc = 4). At level 0 (leaf
level of the computation tree, Fig. 2), first each partition, Π0

i,j

(1 ≤ i ≤ 4, 1 ≤ j ≤ 4), performs a certain number of
flat co-clustering iterations on its corresponding sub-matrix,
A0

i,j , independently and in parallel using the G0 processors
allocated to it. Each partition generates, k/4 row clusters and
l/4 column clusters. Then, pairs of adjacent partitions (for
instance partition Π0

1,1 and partition Π0
2,1), merge their row

and column clusters respectively, to generate k/2 row clusters
and l/4 column clusters at level 1. Since, the underlying sub-
matrices of the adjacent partitions are concatenated along the
rows, this step is called as row folding step (See Fig. 1 and
Step 3 in Algorithm 2). Then, at level 1, each partition, Π1

i,j

(with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4), independently runs flat
co-clustering iterations on the sub-matrix, A0

i,j , with k/2 row
clusters and l/4 column clusters. The updated row and column
clusters of adjacent partitions are merged to generate k row
clusters and l/4 column clusters at the next level 2 (another
row fold step). These two row fold steps for the corresponding
sub-matrices are illustrated in Fig. 1. These are followed by
two column fold steps. At level 2, each partition, Π2

i,j (i == 1,
1 ≤ j ≤ 4) independently runs flat co-clustering iterations on
the sub-matrix, A2

i,j , to update the k row clusters and l/4
column clusters. Then, each pair of adjacent partitions merges
the row and column clusters to generate k new row clusters
and l/2 column clusters. These, form the seed row and column
clusters for level 3. After, the flat co-clustering iterations at
level 3, the k row clusters and l/2 column clusters of the two
partitions at this level, are merged to generate k row clusters
and l column clusters at level 4. These clusters are then refined
by final set of flat co-clustering iterations. This gives us the
full matrix with k row and l column clusters. For exact details
refer Algorithm 2.

While merging row and column clusters of one level to
generate row and column clusters of the next level, one needs
ensure low merge compute and communication time while at
the same time generating good quality starting seed clusters
for the next level. In order to achieve this, we use maximum
weight bi-partite matching across two sets of clusters. During
row folds, the number of row clusters simply doubles hence,
no merge is required. While, the number of column clusters
remains the same at the next level. Hence, using the number
of overlapping columns as the weight of the edge connecting
two column clusters, we perform maximum weight bi-partite
matching algorithm to quickly merge the column clusters.
This merging operation requires an additional MPI Allreduce
operation to communicate the cluster memberships from one
partition to the other.

The row and column merging (folding) usually happens
alternatively to reduce the bias towards row or column clusters.
However, to minimize data transfer volume for mitigating load
imbalance, one might choose a particular sequence of row or
column folds/merge. We leave a detailed study of this effect
to future work.
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Fig. 1. Hierarchical Co-clustering: Matrix Row/Column Folding
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Algorithm 2 Distributed Hierarchical Co-Clustering
Input: Ratings Matrix A, Non-zeros matrix W , No. of row clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC ,ARC ,ACC ,AR and AC .
Method:
Let A be divided into πr row partitions and πc column partitions. Then the hierarchical algorithm proceeds with log(πr) row
folds first and then with log(πc) column folds. Initialize x = 0 and y = 0.
while (x++) < (log(πr)) do

1. In the current iteration, each partition Πx
i,j reads only the m2̇x

πr
× n

πc
submatrix Ax

i,j of A where 0 ≤ i < πr

2x and
0 ≤ j < πc.
2. Each partition Πx

i,j iteratively calculates a (k.2x/πr, l/πc) locally optimum coclustering (ρxi,j ,γx
i,j) for the submatrix

Ax
i,j

3. Fold along rows: Partition Πx
2i,j merges with partition Πx

2i+1,j in the following manner to form Πx+1
i,j .

1a. ρx2i,j and ρx2i+1,j together form k.2x+1/πr new row clusters ρx+1
i,j

1b. γx
2i,j and γx

2i+1,j merge using maximum bi-partite matching to form l/πc new column clusters γx+1
i,j

end
while (y++) < (log(πc)) do

1. In the current iteration, each partition Πy
i,j reads only the m× n.2y

πc
submatrix Ay

i,j of A where i = 0 and 0 ≤ j < πc

2y .
2. Each partition Πy

i,j iteratively calculates a (k, l.2y/πc) locally optimum coclustering (ρyi,j ,γy
i,j) for the submatrix Ay

i,j

3. Fold along columns: Partition Πy
i,2j merges with partition Πy

i,2j+1 in the following manner to form Πy+1
i,j .

1a. ρyi,2j and ρyi,2j+1 merge using maximum weight bi-partite matching form k new row clusters ρy+1
i,j

1b. γy
i,2j and γy

i,2j+1 together form l.2y+1/πc new column clusters γy+1
i,j

end

Fig. 2. Hierarchical Co-clustering - Computation Tree

TABLE I
NOTATION

Symbol Definition
P0 Total number of nodes for computation
c Number of threads (cores) per node

(m,n) Number of rows and columns in the input matrix
s Sparsity factor of the matrix

(k, l) Number of row and column clusters
(m/k) Average number of rows per row cluster
n/l Average number of columns per column cluster
B0 Interconnect Bandwidth for AllReduce/Allgather
S0 Setup cost for AllReduce/Allgather

V. TIME COMPLEXITY ANALYSIS

In this section, we establish theoretically, the performance
and scalability advantage of our optimized distributed hierar-
chical algorithm. We look at performance of the hierarchical
algorithm as compared to the flat algorithm. Refer notation
given in Table V.

The time complexity analysis of the flat distributed co-

clustering algorithm using MPI + OpenMP (hybrid) is given
in detail in [11]. This approach is similar to the MPI only
flat algorithm, but additionally exploits communication and
compute overlap using multi-core cluster architectures. Thus,
the overall time complexity for the flat hybrid distributed co-
clustering algorithm, per iteration, is given by:

Th(m,n,P0, k, l) = mn/P0 ∗ c+ 2 ∗ (mn/B0) ∗ log(P0)

+ S0 + 3 ∗mns ∗ (k + l)/(P0 ∗ c))
(2)

A. Analysis of Hierarchical Algorithm

For the parallel hierarchical co-clustering algorithm, we
consider 2 way merge at each level, i.e. a binary tree (for
sake of simplicity) with Z levels of computation. In case of
the binary tree, the base level, l0, has 2Z partitions each of
size G0 nodes (processors) such that G0 = P0/(mn). At each
level, lz , z ∈ [0..Z − 1], the k′ row clusters and l′ column
clusters from two previous level partitions are merged to form
a new initial set of k′′ row clusters and l′′ column clusters for
the next level partition. In the hierarchical computation, first
the row to row cluster assignment and the column to column
cluster assignment iterations are performed at a level, lz . The
time required for these iterations depends upon the size of the
sub-matrix handled by each partition at that level, the number
of clusters k′ and l′, as well as the number of nodes in the
partition at that level. The total number of levels in the binary
tree of hierarchical computations is given by:

Z = log(πr) + log(πc) (3)

We consider separately, the cost for iterations at each level
and the merge overhead to go from one level to the next. For
sake of simplicity, we assume that all row-folds (with levels
referred to as x, x ∈ [0.. log(πr) − 1]) happen before the
col-folds (with levels referred to as y, y ∈ [0.. log(πc) − 1]).
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The cost of iterations during the row-fold at each level,

T(flat)(m.2x/πr, n/πc, G0.2
x, kx, l/πc), (4)

where, kx = k.2x/πr (flat hybrid equation). Similarly, the
cost of iterations during col-fold at each level, referred to
here as,

T(flat)(m,n.2y/πc, P0.2
y/πc, k, ly), (5)

where P0 = G0 ∗ πr ∗ πcandly = l.2y/πc. For merge
compute and communication cost, let us consider row-fold
based merge between two partitions of level, x, to create
a new partition at level, x + 1, and its initial row and
column clusters. Here, communication takes place between
the nodes of the two partitions at level x to share the row
cluster and column cluster mapping. The time for this is
given by : O(S0 + 2(kx + lπc) ∗ log(2

x.G0)/B0). Then the
nodes perform maximum weight bipartite matching between
row clusters of the two partitions and also between column
clusters of the two partitions. Since, this matching effort is
equally distributed across the nodes (and cores within the
nodes) of the two partitions, this compute time is given by:
O((kx+l/πc)/(G0∗c)). Once, the merge happens, the assign-
ment of rows to the row clusters and columns to the column
clusters is done by each node. The time for this is given by
: O((1/2G0.c) ∗ ((m.2x/πr) + n/πc)). Let α = log(πr) and
β = log(πc). The merge time for row based merge between
two partitions at level,x, 0 ≤ x ≤ (log(πr) − 1), is given by
(assuming compute time dominates):

T(r merge)(m.2x/πr,n/πc, G0.2
x) =

(kx + l/πc)

(G0 ∗ c)

+ (
1

2G0.c
∗ (

m.2x

πr

+
n

πc

))

(6)

Similarly, the merge time for column based merge between
two partitions at level,α + y, 0 ≤ y ≤ (β − 1), is given by
(assuming compute time dominates):

T(c merge)(m,n.2y/πc, G0.πr.2
y) =

(k + ly)

(G0 ∗ πr.2y.c)
+

((1/2G0.πr, 2
y.c) ∗ (m+ (n.2y)/πc))

(7)

The total time in the hierarchical computation is given by the
time for all row folds Trow fold plus the time for all column
folds Tcol fold.

T(hier) = Trow fold + Tcol fold

Trow fold = O(

log(πr−1)∑

x=0

(
(k/πr.2

x + l/πc).m/πr.n/πc.2
x.s

P0.2x

πr.πc

))

Tcol fold = O(

log(πc−1)∑

x=0

(k +
l.2x

πc

).
m.n.s

P0
)

(8)

The total time over all row folds is given by:

Trow fold = O((
k.(πr − 1)

πr

+
l. log(πr)

πc

).
m.n.s

P0
) (9)

Similarly using Tcol fold can be written as:

Tcol fold = O((k. log(πc) +
l.(πc − 1)

πc

).
m.n.s

P0
) (10)

Substituting the expression for Trow fold, Tcol fold from
equation (9), and simplifying equation (10), and assuming
the communication cost is low, we get:

Thier = O(((k. log(πc) +
l.(πc − 1)

πc

)

+ (
k.(πr − 1)

πr

+
l. log(πr)

πc

)).
m.n.s

P0
)

(11)

Now combining results from (11) & (3) and making k=l=C,
πr=πc=π we get Thier as:

Thier = O(
(2.(1− C

π
) + C.( log(π)

π
+ 1)).m.n.s

P0

2. log(π)
) (12)

Hence by doing similar replacement in Tflat as above we
get :

Tflat = O(
C.m.n.s

P0
)

Thier

Tflat

= O(
1

log(π)
)

(13)

Equation (13) demonstrates that the distributed hierarchical
algorithm performs better than the distributed flat algorithm.
In real experiments, the compute and communication merge
overheads lead to lesser gain. One can use the above perfor-
mance model (equation (11)) to compute the optimal values
of πr, πc and Z. We skip this analysis for brevity.

VI. LOAD BALANCING OPTIMIZATION

Since the input matrix is highly sparse, one needs to perform
load-balancing to achieve the maximum parallel efficiency on
large scale parallel systems. We model the load balancing
problem as an Integer Linear Program (ILP) for both flat and
hierarchical distributed algorithms. This can be used for both
static load balancing as well as dynamic load balancing in case
of online co-clustering / collaborative filtering algorithms. In
the distributed flat algorithm, we need to ensure that each
processor has equal compute load based on the rows and
columns assigned to that processor. Formally, this problem is
related to the k-partition problem that is known to be NP-hard.

However, approximation algorithms can be used obtain a
good load balanced data distribution for the flat distributed CF
algorithm. We employed greedy row and column movement
heuristic to ensure good balancing for the flat algorithm. The
flat load balancing algorithm works in iterations. In each
iteration the total row and column load on each processor,
CLp is computed and using all-reduce this information is
obtained at each processor. Then, a matching is computed
between processors with heavy loads and processors with light
load. After this, the processor with high load sends a certain
number of heavy rows and columns to its matched processor
with low load. The selection of rows and columns to send
is made to ensure that these two matched processors end up
with similar load after their communication. These iterations
are repeated till the overall load imbalance in the system is
below a certain threshold.

In the hierarchical algorithm one needs to ensure load
balance across the partitions at each level of the computation
hierarchy. Performing this forward-looking load balancing for
all levels in the beginning (at the leaf level) itself will ensure
high parallel efficiency at all levels of execution. This can be
viewed as a multi-level k-partitioning problem. At each level,
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the problem is similar (with a small difference) to the flat case,
i.e. k-partition problem). This multi-level k-partition problem
is NP-hard since it a generalization of the k-partition problem.
Further, our problem has additional constraints which makes
it computationally challenging. We use similar heuristic as for
the flat algorithm at levels close to the leaf of the tree since
it at these levels that the load balance leads to severe impact
on performance.

A. Online Hierarchical Co-clustering Algorithm

Algorithm 3 presents the hierarchical online distributed
co-clustering algorithm. In the online algorithm, the row and
column clusters at various levels are updated on the hierarchi-
cal computation tree, as a collection of row/column updates in
the input matrix come along. The clusters at the top most level
and the corresponding averages ACOC

gh ,ARC
gj ,ACC

ih at that level
are hence maintained which can be used for the purpose of
prediction later. The key challenge in the online hierarchical
algorithm, is to calculate the changed co-clustering for the
partition Πi,j

y+1 at level y + 1, using the updates at the level
y in an efficient manner along the hierarchical computation
tree. In order to acheive this, the changes in clusters at level y
are propagated to level y+1 while utilizing the history of the
previous clustering at level y+1. This reduces the number of
cluster assignment iterations to reach an optimal co-clustering
at level y + 1.

The propagation of changes from level y to level y + 1
is done in the following manner (refer Algorithm 3. Let us
assume we have the optimal local clustering for the partitions
at level y. We need to propagate the information in this
changed assignment of row clusters (say Ky) to the old row
clusters at level y + 1, Ky+1. Now, we take each row r at
level y that is affected by the updates to the ratings in that
partition and hence changed to a cluster Ry in Ky . Now, the
assignment of r in Ky+1 is determined as follows. Find that
cluster Ry+1 ∈ Ky+1 such that Ry has a maximal match with
Ry+1 (in terms of number of rows assigned to them), more
than any other row cluster in Ky+1. Now at level y + 1, the
row r is assigned to this row cluster Ry+1 initially. In this
fashion, one round of initial row assignment updates is done
for all the changed rows in the partition Πi,j

y+1 by propagating
the changes from the previous level while using the history at
this level. Then, a few rounds of flat row cluster assignment
update iterations are run to reduce the error in the divergence
function chosen. For reducing the run time further, these
iterations at lower levels of the hierarchical tree (closer to the
leaves) can be skipped, since the number of changes within a
partition at a lower level maybe so less that just a reassignment
of clusters by propagating the cluster updates is enough to
maintain the clusters and ensure good accuracy. In this case,
we will significantly reduce the algorithm execution time while
not loosing much on the accuracy of cluster assignments
at lower levels. Further, successive chunks (collections) of
updates can proceed in parallel by carefully, allocating and
multiplexing the cores in each node to process a chunk
(collection) of updates. Thus, at any point of time, multiple
updates can proceed in parallel up (from leaf to the root)
along the hierarchical computation tree in a pipelined fashion.
This pipelined parallelism leads to soft real-time online CF
performance by enabling higher utilization of the underlying
compute nodes in the system.

VII. RESULTS & ANALYSIS

The hybrid flat and hierarchical distributed algorithms were
both implemented using MPI and OpenMP. The Netflix Prize
dataset (100M training ratings and 1.5M validation ratings
on a scale of 1..5, over 480K users and 17K movies), and,
Yahoo KDD Cup (252M training ratings and 4M validation
ratings on a scale of 1..100, over 1M users and 624K songs)
datasets were used to evaluate and compare the performance
and scalability of these distributed algorithms.
Platform: The experiments were performed on the Blue
gene/P (MPP) architecture. Each node in Blue Gene/P is a
quad-core chip with frequency of 850 MHz having 2 GB of
DRAM, 32 KB of L1 instruction and data caches per core,
2KB prefetch buffer (L2 cache) and 8MB of L3 cache. Blue
Gene/P has 3D torus interconnect with 3.4 Gbps bandwidth
in each of the six directions per node along with separate
collective and global barrier networks. MPI was used across
the nodes for communication while within each node OpenMP
was used to parallelize the computation and communication
amongst the four cores.

For all the experiments, we obtained RMSE in the range
0.87 ± 0.02 on the Netflix validation data and RMSE in the
range 26 ± 4 on the Yahoo KDD Cup data. The sequential
implementation 1 and the flat distributed algorithm [11]
obtains similar accuracy for both datasets. Below, k refers
to the number of row clusters (k = 16 for Netflix, k = 20
for Yahoo KDD Cup) generated while l refers to the number
of column clusters (l = 16 for Netflix, l = 20 for Yahoo
KDD Cup) generated. For all the experiments we used the C6
constraints (refer section III).

A. Scalability Analysis

We present the strong, weak and data scalability analysis
including the training phase and the prediction phase for I-
divergence with Netflix dataset and for Euclidean divergence
with Yahoo KDD Cup dataset.

1) Strong Scalability: Fig. 3(a) compares the strong scal-
ability curves of the hierarchical algorithm and the flat algo-
rithm. The hierarchical algorithm with load balancing (Hier-lb)
has better performance of around 2× (77s vs 144s at 64 nodes)
to 4× (9.38s vs 38.2s at 4096 nodes) over the flat algorithm.
This gap increases with increasing number of nodes as the
hierarchical algorithm has better load balance across the nodes
along with lower communication time, while achieving the
same accuracy as flat (0.87± 0.02 RMSE). This is a very de-
sirable property for massive scale analytics and comes from the
novel hierarchical design of our algorithm. This also demon-
strates soft real-time training (9.38s) performance for the
full Netflix dataset even with the computationally expensive
I-divergence objective. In the hierarchical algorithm, as the
number of nodes increases by 64×, from 64 to 4096, the time
decreases by 8.2× (from 77s to 9.38s). The prediction time
was 0.7s for 1.4M ratings. This gives an average prediction
time of 0.5μs per rating using 4K nodes. Fig. 4(a) illustrates
the performance gain of the hierarchical algorithm over the
flat algorithm for Euclidean-divergence with the Yahoo KDD
Cup dataset. The hierarchical algorithm consistently performs
better than the flat by around 4× (61s vs 267s at 64 nodes and
11.85s vs 51s at 4096 nodes). This also demonstrates soft real-
time training performance (13.28s) for the full Yahoo KDD
Cup data. Because of the fundamental advantage of lesser
overall compute requirement and lesser load imbalance and
communication cost (while giving the same accuracy 26 ± 4
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Algorithm 3 Hierarchical Online Distributed Coclustering update algorithm

Input: Original Matrix A, Updated Ratings Matrix U , Previous Hierarchical Co-clusters (ρi,jy ,γi,j
y ) for each partition Πi,j

y

(1 ≤ y ≤ Y0, 1 ≤ i ≤ m1, 1 ≤ j ≤ n1) and averages ACOC
gh ,ARC

gj ,ACC
ih at level Y0

Output: Updated optimal co-clustering (ρi,jy ,γi,j
y ) and averages ACOC

gh ,ARC
gj ,ACC

ih at level Y0.
Method:
1. Before starting the iterations, update the m× n matrix A with changes from U . 2. Following the hierarchical structure, at
level y, Partition Πi,j

y (1 ≤ i ≤ m1, 1 ≤ j ≤ n1), as shown in the figure gets m
m1

rows (i.e, a m
m1
× n submatrix AR

i ) and n
n1

columns (i.e, a m× n
n1

submatrix AC
j ) where m1 = 2�

y
2 � and n1 = 2	

y
2 
.

Each node p in this partition gets m
m1∗G0

rows and n
G0∗n1

columns where G0 is the number of nodes in the partition. At any
level y, to each partition Πi,j

y only the m
m1
× n

n1
submatrix Ai,j is visible/read by the nodes in the partition. This matrix is

coclustered into k
m1

row clusters and l
n1

column clusters.
while (y ++) ≤ Y0 do

3. Update the locally optimum coclustering (ρi,jy ,γi,j
y ) for the updated submatrix Ai,j at each partition Πi,j

y

4. If y is odd,
Fold along rows: Partition Π2i,j

y merges with partition Π2i+1,j
y in the following manner to form Πi,j

y+1.
1a. Each row r that updated its cluster in ρ2i,jy or ρ2i+1,j

y at level y does a maximal match of that cluster with one of the
old clusters ρi,jy+1 at level y + 1 and joins it, eventually leading to k1 changed Row clusters ρi,jy+1.
1b. Each column c that updates its cluster in γ2i,j

y or γ2i+1,j
y at level y does a maximal match of that cluster with one of

the old clusters γi,j
y+1 at level y + 1 and joins it, eventually leading to l1 changed Column clusters γi,j

y+1 .
1c. Some flat row and column update iterations are run if y < H before proceeding to the next level and making m1 = m1

2
else If y is even,
Fold along Columns: Partition Πi,2j

y merges with partition Πi,2j+1
y in the following manner to form Πi,j

y+1.
1a. Each row r that updated its cluster in ρi,2jy or ρi,2j+1

y at level y does a maximal match of that cluster with one of the
old clusters ρi,jy+1 at level y + 1 and joins it, eventually leading to k1 changed Row clusters ρi,jy+1.
1b. Each column c that updates its cluster in γi,2j

y or γi,2j+1
y at level y does a maximal match of that cluster with one of

the old clusters γi,j
y+1 at level y + 1 and joins it, eventually leading to l1 changed Column clusters γi,j

y+1 .
1c. Some flat row and column update iterations are run y < H before proceeding to the next level and making n1 = 1

2

end
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Fig. 3. Netflix (I-div/C6): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

RMSE) as compared to the flat algorithm, the hierarchical
algorithm achieves better performance and hence is ideally
suited for massive scale analytics. The prediction time was
3.2s for 4M ratings. This gives an average prediction time of
0.8μs per rating. The parallel efficiency here is lower than the
Netflix data since the Yahoo data has much higher sparsity
and hence load imbalance, but it can be further improved by
fine tuning the load balance further as well as optimizing the
merge phase in the hierarchical algorithm.

2) Weak Scalability: Fig. 3(b) compares the weak scalabil-
ity curves for hierarchical algorithm and the flat algorithm,
using I-divergence based co-clustering with C6 constraints.
As the number of nodes (P0) increases from 64 to 4096
and the training data increases from 6.25% to 400% (400M

ratings) of the full Netflix dataset (with k = 16, l = 16), the
total training time for the hierarchical algorithm increases by
around 8.7× (4.5s to 39s), while that for the flat algorithm
increases by 11.87× (9s to 107s), thus demonstrating better
weak scalability. Further, the hierarchical algorithm performs
consistently better compared to the flat algorithm, around 2×
(4.5s vs 9s) with 64 nodes and 2.7× (39s vs 107s) at 4096
nodes. Fig. 4(b) demonstrates the weak scalability of the
hierarchical algorithm for Euclidean divergence with Yahoo
KDD Cup dataset: with 64× increase in the data (16.25M to
1B ratings) and number of nodes (64 to 4096), the training
time only increases by 3.5× (8.15s to 28.5). Further, the
hybrid algorithm performs consistently better than the flat
algorithm, 3.9× (8.15s vs 32s) at 64 nodes and 2.9× (28.5s
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Fig. 4. Yahoo-KDD (Euclidean/C6): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

vs 82.4s) at 4096 nodes.
3) Data Scalability: Fig. 3(c) compares the data scalability

curves of the hierarchical algorithm and the flat algorithm.
As the training data increases from 13M to 900M (using
replication of Netflix dataset), while P0 = 4096, the training
time for the hierarchical algorithm increases by 34× (1.87s
to 64s) which is much lesser than that of the flat algorithm
increases by 48×. This demonstrates better than linear data
scalability of the hierarchical algorithm and better data scala-
bility over the flat algorithm. Further, the hierarchical performs
consistently better than the flat algorithm, 2.24× at 13M
ratings (1.87s vs 4.2s) and 3.2× at 900M ratings (64s vs
203s). Moreover, this gap increases with increasing input size
of the data, that makes the hierarchical algorithm attractive
for massive scale data. Fig. 4(c) compares the data scalability
curves for the hierarchical and the flat algorithm on the Yahoo
KDD Cup dataset (with P0 = 4096, Euclidean divergence/C6).
The hierarchical algorithm demonstrates better than linear data
scalability (21× increase in time with 64× increase in data
from 65M ratings to 4.6B ratings). It performs better than
the flat algorithm by 3.15× at 65M ratings (3.8s vs 12s)
and 2.4× at 4.6B ratings (80s vs 194s). On 1B as well as for
2.3B ratings, the hierarchical algorithm achieves soft real-time
performance, 25s and 47s respectively.

B. Detailed Scalability Comparison

In this section we present detailed comparison of the gains
obtained by the hierarchical algorithm and load balancing.
Fig. 5(a) presents the curves for strong scalability for the
flat hybrid algorithm, the hybrid flat load balanced algorithm
and the hierarchical load balanced algorithm. The hybrid flat
load balanced algorithm performs around 2× better than the
flat hybrid algorithm and this gap increases with increasing
number of nodes. This is because at P0 = 64, the flat hybrid
algorithm is able to utilize the 4 threads per node efficiently,
while also being able to effectively overlap computation with
communication. However, at higher values of P0, the load
imbalance problem dominates its overall throughput. Hence,
its performance degrades w.r.t the load balanced flat algorithm
by 2× at P0 = 1024, and its speedup is only 2.9× over 16×
increase in the number of nodes. The hybrid flat load balanced
algorithm eliminates this problem by making sure that each
node roughly processes the same number of entries. Hence,
the hybrid flat load balanced algorithm, achieves 3.6× speedup
over 16× increase in the number of nodes. The hierarchical
algorithm further demonstrates an additional 2× performance
over the flat load balanced algorithm at P0 = 1024 and an

improvement in speedup to 7.2× with 16× increase in the
number of nodes.

Fig. 5(b) presents the comparison curves for weak scala-
bility. Here, the hybrid flat algorithm incurs 5.6× increase
in time with 16× increase in data and number of nodes,
and the flat load balanced algorithm incurs 3.95× increase
in time; while the hierarchical algorithm incurs only 2.6×
increase in time. This can be attributed to better efficiency
in the hierarchical algorithm as compared to the flat algorithm
even with load balance. Further, the hierarchical algorithm has
consistently superior performance over the hybrid flat load
balanced algorithm by around 2× (at 1024 nodes); while the
flat load balanced algorithm has around 2× performance over
the flat hybrid algorithm owing to its better work distribution
amongst the nodes. Fig. 5(c) presents the comparison curves
for data scalability. The hybrid flat load balanced algorithm
achieves gain to 1.8× at P0 = 64 and 2.15× at P0 = 1024
over the flat hybrid algorithm. Further, the hybrid flat load
balanced algorithm improves the overall data scalability over
the flat hybrid algorithm (6.6× increase in time overall vs
14.6× for flat hybrid). The hierarchical algorithm further
improves the data scalability by achieving only 3.2× overall
increase in time with 16× increase in data size.

C. Online Algorithm: Performance Analysis

Fig. 6(a) illustrates the performance gain of the hierarchical
online algorithm over the baseline MPI online algorithm for
Euclidean-divergence with 4% change in data. The hierarchical
online algorithm performs better than the baseline by around
3.64× to 7×. This also demonstrates soft real-time online
training performance (2.81s) of our algorithm. The parallel
efficiency can be further improved here, by having better load
balance. Further, the hierarchical algorithm involves node to
node communication during the merge phase. This leads to
increase in the communication time, leading to decrease in
parallel efficiency.
Fig. 6(b) illustrates the weak scalability of the online hierarchi-
cal algorithm for Euclidean divergence with 4% incremental
change in the Netflix dataset. Here, with 16× increase in the
data (matrix size) and number of nodes, the training time
remains pretty much the same. Further, the hierarchical online
algorithm performs consistently better than the online baseline
algorithm by around 4×.
Fig. 6(c) compares the data scalability curves for the online
hierarchical and the online baseline algorithm with P0 = 1024,
Euclidean divergence/C6 and 4% incremental change in the
Netflix dataset. The online hierarchical algorithm demonstrates
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Fig. 6. Netflix Online(Euclidean/C6): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

linear data scalability (2× time increase with 8× increase in
data (number of rows)) and performs better than the baseline
algorithm by around 2.3× to 3.24×.

VIII. CONCLUSIONS & FUTURE WORK

Real-time co-clustering and collaborative filtering with high
prediction accuracy are computationally challenging problems.
We have presented a novel hierarchical approach for both
offline and online distributed co-clustering and collaborative
filtering along with theoretical analysis of parallel time com-
plexity. Soft real-time performance and superior scalability
of our algorithm has been demonstrated experimentally using
Netlfix and Yahoo KDD Cup datasets on multi-core cluster
architecture. Our hierarchical algorithm outperforms all known
prior results for collaborative filtering while maintaining high
accuracy. In future, we intend to investigate theoretical analysis
of convergence for this algorithm.
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