Affinity Driven Distributed Scheduling Algorithm for
Parallel Computations

Ankur Narangl, Abhinav Srivastaval,
Naga Praveen Kumar!, and Rudrapatna K. Shyamasundar?

1 IBM Research - India, New Delhi
2 Tata Institute of Fundamental Research, Mumbai

Abstract. With the advent of many-core architectures efficient scheduling of
parallel computations for higher productivity and performance has become very
important. Distributed scheduling of parallel computations on multiple placeﬂ
needs to follow affinity and deliver efficient space, time and message complex-
ity. Simultaneous consideration of these factors makes affinity driven distributed
scheduling particularly challenging. In this paper, we address this challenge by
using a low time and message complexity mechanism for ensuring affinity and a
randomized work-stealing mechanism within places for load balancing.

This paper presents an online algorithm for affinity driven distributed schedul-
ing of multi-placeﬁ parallel computations. Theoretical analysis of the expected
and probabilistic lower and upper bounds on time and message complexity of this
algorithm has been provided. On well known benchmarks, our algorithm demon-
strates 16% to 30% performance gain as compared to Cilk [[6] on multi-core Intel
Xeon 5570 architecture. Further, detailed experimental analysis shows the scal-
ability of our algorithm along with efficient space utilization. To the best of our
knowledge, this is the first time affinity driven distributed scheduling algorithm
has been designed and theoretically analyzed in a multi-place setup for many core
architectures.

1 Introduction

The exascale computing roadmap has highlighted efficient locality oriented scheduling
in runtime systems as one of the most important challenges (”Concurrency and Local-
ity” Challenge [[10]]). Massively parallel many core architectures have NUMA character-
istics in memory behavior, with a large gap between the local and the remote memory
latency. Unless efficiently exploited, this is detrimental to scalable performance. Lan-
guages such as X10 [9]], Chapel [8]] and Fortress [4] are based on partitioned global
address space (PGAS [11]) paradigm. They have been designed and implemented as
part of DARPA HPCS prograrrE for higher productivity and performance on many-core
massively parallel platforms. These languages have in-built support for initial place-
ment of threads (also referred as activities) and data structures in the parallel program.

! Place is a group of processors with shared memory.
2 Multi-place refers to a group of places. For example, with each place as an SMP(Symmetric
MultiProcessor), multi-place refers to cluster of SMPs.

3 orww highproductivity.org/

M.K. Aguilera et al. (Eds.): ICDCN 2011, LNCS 6522, pp. 1674178]2011.
(© Springer-Verlag Berlin Heidelberg 2011

www.highproductivity.org/

168 A. Narang et al.

Therefore, locality comes implicitly with the program. The run-time systems of these
languages need to provide efficient algorithmic scheduling of parallel computations
with medium to fine grained parallelism.

For handling large parallel computations, the scheduling algorithm (in the run-time
system) should be designed to work in a distributed fashion. This is also imperative
to get scalable performance on many core architectures. Further, the execution of the
parallel computation happens in the form of a dynamically unfolding execution graph.
It is difficult for the compiler to always correctly predict the structure of this graph
and hence perform correct scheduling and optimizations, especially for data-dependent
computations. Therefore, in order to schedule generic parallel computations and also
to exploit runtime execution and data access patterns, the scheduling should happen
in an online fashion. Moreover, in order to mitigate the communication overheads in
scheduling and the parallel computation, it is essential to follow affinity inherent in
the computation. Simultaneous consideration of these factors along with low time and
message complexity, makes distributed scheduling a very challenging problem.

In this paper, we address the following affinity driven distributed scheduling prob-
lem. Given: (a) An input computation DAG (Fig. [T)) that represents a parallel multi-
threaded computation with fine to medium grained parallelism. Each node in the DAG
is a basic operation such as and/or/add etc. and is annotated with a place identifier
which denotes where that node should be executed. Each edge in the DAG represents
one of the following: (i) spawn of a new thread or, (i7) sequential flow of execution
or, (i44) synchronization dependency between two nodes. The DAG is a strict parallel
computation DAG (synchronization dependency edge represents an activity waiting for
the completion of a descendant activity, details in section[3)); (b) A cluster of n SMPs
(refer Fig. @) as the target architecture on which to schedule the computation DAG.
Each SMPH also referred as place has fixed number(m) of processors and memory. The
cluster of SMPs is referred as the multi-place setup. Determine: An online schedule for
the nodes of the computation DAG in a distributed fashion that ensures the following:
(a) Exact mapping of nodes onto places as specified in the input DAG. (b) Low space,
time and message complexity for execution.

In this paper, we present the design of a novel affinity driven, online, distributed
scheduling algorithm with low time and message complexity. The algorithm assumes
initial placement annotations on the given parallel computation with the consideration
of load balance across the places. The algorithm controls the online expansion of the
computation DAG. Our algorithm employs an efficient remote spawn mechanism across
places for ensuring affinity. Randomized work stealing within a place helps in load
balancing. Our main contributions are:

— We present a novel affinity driven, online, distributed scheduling algorithm. This
algorithm is designed for strict multi-place parallel computations.

— Using theoretical analysis, we prove that the lower bound of the expected execution
time is O(maxy, Tf /m + Tw ,,) and the upper bound is O3, (TF/m + TE)),
where k is a variable that denotes places from 1 to n, m denotes the number of
processors per place, T denotes the execution time on a single processor for place

4 Symmetric MultiProcessor: group of processors with shared memory.

Affinity Driven Distributed Scheduling Algorithm for Parallel Computations 169

k, and T, ,, denotes the execution time of the computation on n places with infinite
processors on each place. Expected and probabilistic lower and upper bounds for
the message complexity have also been provided.

— On well known parallel benchmarks (Heat, Molecular Dynamics and Conjugate
Gradient), we demonstrate performance gains of around 16% to 30% over Cilk on
multi-core architectures. Detailed analysis shows the scalability of our algorithm as
well as efficienct space utilization.

2 Related Work

Scheduling of dynamically created tasks for shared memory multi-processors has been
a well studied problem. The work on Cilk [6] promoted the strategy of randomized work
stealing. Here, a processor that has no work (thief) randomly steals work from another
processor (victim) in the system. [6] proved efficient bounds on space (O(P - S1)) and
time (O(T1/P + Tw)) for scheduling of fully-strict computations (synchronization de-
pendency edges go from a thread to only its immediate parent thread, section[3) in an
SMP platform; where P is the number of processors, 77 and .S; are the time and space
for sequential execution respectively, and T, is the execution time on infinite proces-
sors. We consider locality oriented scheduling in distributed enviroments and hence are
more general than Cilk. The importance of data locality for scheduling threads moti-
vated work stealing with data locality [[1] wherein the data locality was discovered on
the fly and maintained as the computation progressed. This work also explored initial
placement for scheduling and provided experimental results to show the usefulness of
the approach; however, affinity was not always followed, the scope of the algorithm
was limited to only SMP environments and its time complexity was not analyzed. [S]]
analyzed the time complexity (O(T1/P + T)) for scheduling general parallel com-
putations on SMP platforms but does not consider locality oriented scheduling. We
consider distributed scheduling problem across multiple places (cluster of SMPs) while
ensuring affinity and also provide time and message complexity bounds.

[7] considers work-stealing algorithms in a distributed-memory environment, with
adaptive parallelism and fault-tolerance. Here task migration was entirely pull-based
(via a randomized work stealing algorithm) hence it ignored affinity and also didn’t
provide any formal proof for the resource utilization properties. The work in [2] de-
scribed a multi-place(distributed) deployment for parallel computations for which ini-
tial placement based scheduling strategy is appropriate. A multi-place deployment has
multiple places connected by an interconnection network where each place has multiple
processors connected as in an SMP platform. It showed that online greedy scheduling
of multi-threaded computations may lead to physical deadlock in presence of bounded
space and communication resources per place. However, the computation did not re-
spect affinity always and no time or communication bounds were provided. Also, the
aspect of load balancing was not addressed even within a place. We ensure affinity
along with intra-place load balancing in a multi-place setup. We show empirically, that
our algorithm has efficient space utilization as well.

170 A. Narang et al.
3 System and Computation Model

The system on which the computation DAG is scheduled is assumed to be cluster of
SMPs connected by an Active Message Network (Fig.2). Each SMP is a group of pro-
cessors with shared memory. Each SMP is also referred to as place in the paper. Active
Messages (AM E is a low-level lightweight RPC(remote procedure call) mechanism that
supports unordered, reliable delivery of matched request/reply messages. We assume
that there are n places and each place has m processors (also referred to as workers).

The parallel computation to be dynamically scheduled on the system, is assumed
to be specified by the programmer in languages such as X10 and Chapel. To describe
our distributed scheduling algorithm, we assume that the parallel computation has a
DAG(directed acyclic graph) structure and consists of nodes that represent basic oper-
ations like and, or, not, add and so forth. There are edges between the nodes in the
computation DAG (Fig. [T) that represent creation of new activities (spawn edge), se-
quential execution flow between the nodes within a thread/activity (continue edge) and
synchronization dependencies (dependence edge) between the nodes. In the paper we
refer to the parallel computation to be scheduled as the computation DAG. At a higher
level, the parallel computation can also be viewed as a computation tree of activities.
Each activity is a thread (as in multi-threaded programs) of execution and consists of
a set of nodes (basic operations). Each activity is assigned to a specific place (affinity
as specified by the programmer). Hence, such a computation is called multi-place com-
putation and DAG is referred to as place-annotated computation DAG (Fig.[1} v1..020
denote nodes, 7'1..7°6 denote activities and P1..P3 denote places).

Based on the structure of dependencies between the nodes in the computation DAG,
there can be following types of parallel computations: (a) Fully-strict computation:
Dependencies are only between the nodes of a thread and the nodes of its immediate
parent thread; (b) Strict computation: Dependencies are only between the nodes of a
thread and the nodes of any of its ancestor threads; (¢) Terminally strict computation:
(Fig.[I). Dependencies arise due to an activity waiting for the completion of its descen-
dants. Every dependency edge, therefore, goes from the last instruction of an activity
to one of its ancestor activities with the following restriction: In a subtree rooted at an
activity called I, if there exists a dependence edge from any activity in the subtree to
the root activity I, then there cannot exist any dependence edge from the activities in
the subtree to the ancestors of I..

The following notations are used in the paper. P = {P, -, P,} denote the set
of places. {W}, W2..W/™} denote the set of workers at place P;. S; denotes the space
required by a single processor execution schedule. .S, 4, denotes the size in bytes of the
largest activation frame in the computation. D,,,, denotes the maximum depth of the
computation tree in terms of number of activities. T, ,, denotes the execution time of
the computation DAG over n places with infinite processors at each place. % denotes
the execution time for activities assigned to place P using infinite processors. Note
that, Too.n < Y cper, TX. TF denotes the time taken by a single processor for the
activities assigned to place k.

5 Active Messages defined by the AM-2:
http://now.cs.berkeley.edu/AM/active_messages.html

http://now.cs.berkeley.edu/AM/active_messages.html

Affinity Driven Distributed Scheduling Algorithm for Parallel Computations 171

Single Place with
multiple Multiple Places with multiple
processors processors per place

SMP Node SMP Node

E H

o e 0 1 1

Interconnect
(Active Message Network)

SMP SMP Cluster

Fig. 1. Place-annotated Computation Dag

Fig. 2. Multiple Places: Cluster of SMPs

4 Distributed Scheduling Algorithm

Consider a strict place-annotated computation DAG. The distributed scheduling algo-
rithm described below schedules activities with affinity, at only their respective places.
Within a place, work-stealing is enabled to allow load-balanced execution of the com-
putation sub-graph associated with that the place. The computation DAG unfolds in an
online fashion in a breadth-first manner across places when the affinity driven activities
are pushed onto their respective remote places. For space efficiency, before a place-
annotated activity is pushed onto a place, the remote place buffer (FAB, see below) is
checked for space utilization. If the space utilization of the remote buffer (FAB) is high
then the push gets delayed for a limited amount of time. This helps in appropriate space-
time tradeoff for the execution of the parallel computation. Within a place, the online
unfolding of the computation DAG happens in a depth-first manner to enable efficient
space and time execution. Sufficient space is assumed to exist at each place, so physical
deadlocks due to lack of space cannot happen in this algorithm.

Each place maintains a Fresh Activity Buffer (FAB) which is managed by a dedicated
processor (different from workers) at that place. An activity that has affinity for a re-
mote place is pushed into the FAB at that place. Each worker at a place has a Ready
Deque and a Stall Buffer (refer Fig. B). The Ready Deque of a processor contains the
activities of the parallel computation that are ready to execute. The Stall Buffer contains
the activities that have been stalled due to dependency on another activities in the paral-
lel computation. The FAB at each place as well as the Ready Deque at each worker use
a concurrent deque implementation. An idle worker at a place will attempt to randomly
steal work from other workers at the same place (randomized work stealing). Note that
an activity which is pushed onto a place can move between workers at that place (due
to work stealing) but can not move to another place and thus obeys affinity at all times.
The distributed scheduling algorithm is given below.

At any step, an activity A at the 7" worker (at place i), W/, may perform the fol-
lowing actions:

1. Spawn:
(a) A spawns activity B at place,P;, i # j: A sends AM(B) (active message for B)
to the remote place. If the space utilization of FAB;) is below a given thresh-
old, then AM(B) is successfully inserted in the FAB; (at P;) and A continues

172 A. Narang et al.
Place() Place(i)

H I
H Worker(1)
&

Fig. 3. Affinity Driven Distributed Scheduling Algorithm

execution. Else, this worker waits for a limited time, J;, before retrying the
activity B spawn on place P; (Fig.[3).

(b) A spawns B locally: B is successfully created and starts execution whereas A
is pushed into the bottom of the Ready Deque.

2. Terminates (A terminates): The worker at place P;, W,”, where A terminated, picks
an activity from the bottom of the Ready Deque for execution. If none available in
its Ready Deque, then it steals from the top of other workers’ Ready Deque. Each
failed attempt to steal from another worker’s Ready Deque is followed by attempt
to get the topmost activity from the FAB at that place. If there is no activity in the
FAB then another victim worker is chosen from the same place.

3. Stalls (A stalls): An activity may stall due to dependencies in which case it is put
in the Stall Buffer in a stalled state. Then same as Terminates (case 2) above.

4. Enables (A enables B): An activity, A, (after termination or otherwise) may enable
a stalled activity B in which case the state of B changes to enabled and it is pushed
onto the top of the Ready Deque.

4.1 Time Complexity Analysis

The time complexity of this affinity driven distributed scheduling algorithm in terms
of number of throws during execution is presented below. Each throw represents an
attempt by a worker(thief) to steal an activity from either another worker(victim) or
FAB at the same place.

Lemma 1. Consider a strict place-annotated computation DAG with work per place,
TF, being executed by the distributed scheduling algorithm presented in sectiond) Then,
the execution (finish) time for place,k, is O(TF /m+QF /m+QF /m), where QF denotes
the number of throws when there is at least one ready node at place k and Q¥ denotes
the number of throws when there are no ready nodes at place k. The lower bound on
the execution time of the full computation is O(maxy(TF /m + Q¥ /m)) and the upper
boundis O(Y,.(TF/m + Q¥ /m)).

Proof Sketch: (Token based counting argument) Consider three buckets at each place
in which tokens are placed: work bucket where a token is placed when a worker at that
place executes a node of the computation DAG; ready-node-throw bucket where a token
is placed when a worker attempts to steal and there is at least one ready node at that
place; null-node-throw bucket where a token is placed when a worker attempts to steal
and there are no ready nodes at that place (models the wait time when there is no work

Affinity Driven Distributed Scheduling Algorithm for Parallel Computations 173

at that place). The total finish time of a place can be computed by counting the tokens
in these three buckets and by considering load balanced execution within a place (using
randomized work stealing). The upper and lower bounds on the execution time arise
from the structure of the computation DAG and the structure of the online schedule
generated. The detailed proof is presented in [3].

Next, we compute the bound on the number of tokens in the ready-node-throw bucket
using potential function based analysis [5]. Our unique contribution is in proving the
lower and upper bounds of time complexity and message complexity for the multi-
place affinity driven distributed scheduling algorithm presented in section [that in-
volves both intra-place work stealing and remote place affinity driven work pushing.

Let there be a non-negative potential associated with each ready node in the com-
putation dag. If the execution of node u enables node v, then edge(u,v) is called the
enabling edge and u is called the designated parent of v. The subgraph of the compu-
tation DAG consisting of enabling edges forms a tree, called the enabling tree. During
the execution of the affinity driven distributed scheduling algorithm [l the weight of a
node u in the enabling tree, w(u) is defined as (T, — depth(u)). For a ready node,
u, we define ¢;(u), the potential of « at timestep ¢, as:

¢i(u) = 3201 if u is assigned; (4.12)
= 322 otherwise (4.1b)

All non-ready nodes have O potential. The potential at step ¢, ¢;, is the sum of the
potential of all the ready nodes at step . When an execution begins, the only ready
node is the root node with potential, ¢(0) = 327=n~1 At the end the potential is 0
since there are no ready nodes. Let E; denote the set of workers whose Ready Deque
is empty at the beginning of step ¢, and let D; denote the set of all other workers with
non-empty Ready Deque. Let, F; denote the set of all ready nodes present across the
FAB at all places. The total potential can be partitioned into three parts as follows:

¢i = ¢i(E;) + ¢i(D;) + ¢i(F) 4.2)

Actions such as assignment of a node from Ready Deque to the worker for execution,
stealing nodes from the top of victim’s Ready Deque and execution of a node, lead to
decrease of potential. The idle workers at a place do work-stealing alternately between
stealing from Ready Deque and stealing from the FAB. Thus, 2m throws in a round
consist of m throws to other workers’s Ready Deque and m throws to the FAB. For ran-
domized work-stealing one can use the balls and bins game [3]] to compute the expected
and probabilistic bound on the number of throws. Using this, one can show that when-
ever m or more throws occur for getting nodes from the top of the Ready Deque of other
workers at the same place, the potential decreases by a constant fraction of ¢, (D;) with
a constant probability. The component of potential associated with the FAB at place Py,
, (j)f (F3;), can be shown to deterministically decrease for m throws in a round. Further-
more, at each place the potential also drops by a constant factor of ¢¥ (E;). The detailed
analysis of decrease of potential for each component is given in [3]]. Analyzing the rate
of decrease of potential and using Lemma[I]leads to the following theorem.

Theorem 1. Consider a strict place-annotated computation DAG with work per place k,
denoted by le, being executed by the affinity driven multi-place distributed scheduling

174 A. Narang et al.

algorithm (section H)). Let the critical-path length for the computation be T, ,,. The
lower bound on the expected execution time is O(maxy, Tf /m + T, and the upper
bound is O(Y,(TF/m + TE)). Moreover, for any € > 0, the lower bound for the
execution time is O(maxy TF /m + Tao , + log(1/€)) with probability at least 1 — e.
Similar probabilistic upper bound exists.

Proof Sketch: For the lower bound, we analyze the number of throws (to the ready-node-
throw bucket) by breaking the execution into phases of (P = mn) throws (O(m)
throws per place). It can be shown that with constant probability, a phase causes the
potential to drop by a constant factor. More precisely, between phases i and ¢ + 1,
Pr{(¢; — ¢pit1) = 1/4.¢;} > 1/4 (details in [3]). Since the potential starts at ¢g =
32Too.n—1 apd ends at zero and takes integral values, the number of successful phases is
at most (275, — 1) log, /3 3 < 8T, n- Thus, the expected number of throws per place
gets bounded by O(T , - m), and the number of throws is O(Tw », - m) + log(1/€))
with probability at least 1 — € (using Chernoff Inequality). Using Lemmal[Il we get the
lower bound on the expected execution time as O(maxy, T /m + T). The detailed
proof and probabilistic bounds are presented in [3] .

For the upper bound, consider the execution of the subgraph of the computation
at each place. The number of throws in the ready-node-throw bucket per place can be
similarly bounded by O(T%, -m). Further, the place that finishes the execution in the end,
can end up with the number of tokens in the null-node-throw bucket equal to the tokens
in the work buckets and the read-node-throw buckets of all other places. Hence, the
finish time for this place, which is also the execution time of the full computation DAG
is O3, (TF/m + TX)). The probabilistic upper bound can be similarly established
using Chernoff Inequality.

The following theorem bounds the message complexity of the affinity driven work
stealing algorithm 4]

Theorem 2. Consider the execution of a strict place-annotated computation DAG with
critical path-length T ,, by the Affinity Driven Distributed Scheduling Algorithm (sec-
tiond). Then, the total number of bytes communicated across places is O(I - (Spmaz +
nq)) and the lower bound on number of bytes communicated within a place has the ex-
pectation O(m-Tog 1+ Smaz-Nd), where ng is the maximum number of dependence edges
from the descendants to a parent and I is the number of remote spawns from one place to
a remote place. Moreover, for any € > 0, the probability is at least (1 — €) that the lower
bound on the communication overhead per place is O(m-(Too n+1log(1/€)) - ng-Smaz)-
Similarly message upper bounds exist.

Proof. First consider inter-place messages. Let the number of affinity driven pushes to
remote places be O(I), each of maximum O(S,,,.) bytes. Further, there could be at
most ng dependencies from remote descendants to a parent, each of which involves
communication of constant, O(1), number of bytes. So, the total inter place commu-
nication is O(I.(Spmaz + nq)). Since the randomized work stealing is within a place,
the lower bound on the expected number of steal attempts per place is O(m.Too.)
with each steal attempt requiring S, bytes of communication within a place. Further,
there can be communication when a child thread enables its parent and puts the parent
into the child processors’ Ready Deque. Since this can happen n,4 times for each time

Affinity Driven Distributed Scheduling Algorithm for Parallel Computations 175

the parent is stolen, the communication involved is at most 14.Spq2). S0, the expected
total intra-place communication across all places is O(n.m.Ts . Smaz-nq). The prob-
abilistic bound can be derived using Chernoff’s inequality and is omitted for brevity.
Similarly, expected and probabilistic upper bounds can be established for communica-
tion complexity within the places.

5 Results and Analysis

We implemented our distributed scheduling algorithm (ADS) and the pure Cilk style
work stealing based scheduler (CWS) using pthreads (NPTL) APIL. The code was com-
piled using gcc version (4.1.2) with options -O2 and -m64. Using well known bench-
marks the performance of ADS was compared with CWS and also with original Cilkg
scheduler (referred as CORG in this section). These benchmarks are the following.
Heat: Jacobi over-relaxation that simulates heat propagation on a two dimensional grid
for a number of steps [1]]. For our scheduling algorithm (ADS), the 2D grid is partitioned
uniformly across the available coresﬂ; Molecular Dynamics (MD): This is classical
Molecular Dynamics simulation, using the Velocity Verlet time integration scheme. The
simulation was carried on 16 K particles for 100 iterations; Conjugate Gradient (NPB@
benchmark): Conjugate Gradient (CG) approximates the largest eigenvalue of a sparse,
symmetric, positive definite matrix using inverse iteration. The matrix is generated by
summing outer products of sparse vectors, with a fixed number of nonzero elements in
each generating vector. The benchmark computes a given number of eigenvalue esti-
mates, referred to as outer iterations, using 25 iterations of the CG method to solve the
linear system in each outer iteration.

The performance comparison between ADS and CORG was done on Intel multi-core
platform. This platform has 16 cores (2.93 GHz, intel Xeon 5570, Nehalem architec-
ture) with 8M B L3 cache per chip and around 64GB memory. Intel Xeon 5570 has
NUMA characteristics even though it exposes SMP style programming. Fig.] com-
pares the performance for the Heat benchmark (matrix: 32 K x4 K, number of iterations
=100, leafmaxcol = 32). Both ADS and CORG demonstrate strong scalability. Initially,
ADS is around 1.9x better than CORG, but later this gap stabilizes at around 1.20x.

5.1 Detailed Performance Analysis

In this section, we analyze the performance gains obtained by our ADS algorithm vs.
the Cilk style scheduling (CWS) algorithm and also investigate the behavior of our
algorithm on Power6 multi-core architecture.

Fig. 5 demonstrates the gain in performance of ADS vs CWS with 16 cores. For
CG, Class B matrix is chosen with parameters: NA = 75K, Non-Zero = 13M, Outer
iterations = 75, SHIFT = 60. For Heat, the parameters values chosen are: matrix size

6 http://supertech.csail.mit.edu/cilk/

7 The D,qz for this benchmark is log(numCols/lea fmazcol) where numCols represents the
number of columns in the input two-dimensional grid and leafmaxcol represents the number
of columns to be processed by a single thread.

8 http://www.nas.nasa.gov/NPB/Software

http://supertech.csail.mit.edu/cilk/
http://www.nas.nasa.gov/NPB/Software

176 A. Narang et al.

Strong Scalability Comparison: ADS vs CORG .
Performance Comparison: ADS vs CWS WS & FAB Overheads: ADS vs CWS

2000

1500 '\
100 N “a—CORG
.\\:\ —+—ADS

50
40

.
30 \\ s CWS
20 —+—ADS
10 e

Total Time (5)
Total Time (5)

Sa
‘Tz 4 8 16 ‘T [Hea [WD
e CORG| 1623 | 812 | 415 | 204 Feows| 7 | w2 | 108
_.ADS | 859 | 683 | 348 | 195 [caos| ste | o8 [89
Number of Cores Number of Core:
Fig.4. CORG vs ADS Fig.5. ADS vs CWS Fig. 6. ADS vs CWS

= 32 x 4K, number of iterations = 100 and leafimaxcol = 32. While CG has maximum
gain of 30%, MD shows gain of 16%. Fig. [6] demonstrates the overheads due to work
stealing and FAB stealing in ADS and CWS. ADS has lower work stealing overhead
because the work stealing happens only within a place. For CG, work steal time for
ADS (5s) is 3.74 x better than CWS (18.7s). For Heat and MD, ADS work steal time is
4.1x and 2.8 better respectively, as compared to CWS. ADS has FAB overheads but
this time is very small, around 13% to 22% of the corresponding work steal time. CWS
has higher work stealing overhead because the work stealing happens from any place to
any other place. Hence, the NUMA delays add up to give a larger work steal time. This
demonstrates the superior execution efficiency of our algorithm over CWS.

We measured the detailed characteristics of our scheduling algorithm on multi-core
Power6 platform. This has 16 Power6 cores and total 128G B memory. Each core has
64K B instruction L1 cache and 64K B L1 data cache along with 4M B semi-private
unified L2 cache. Two cores on a Power6 chip share an external 32M B L3 cache. Fig.[7]
plots the variation of the work stealing time, the FAB stealing time and the total time
with changing configurations of a multi-place setup, for MD benchmark. With constant
total number of cores = 16, the configurations, in the format (number of places * num-
ber of processors per place), chosen are: (a) (16 % 1), (b) (8 x 2), (¢) (4 *4), and (d)
(2 = 8). As the number of places increase from 2 to 8, the work steal time increases
from 3.55s to 80s as the average number of work steal attempts increases from 140K to
4 M. For 16 places, the work steal time falls to 0 as here there is only a single processor
per place, so work stealing does not happen. The FAB steal time, however, increases
monotonically from 0.3s for 2 places, to 110s for 16 places. In the (16 * 1) configura-
tion, the processor at a place gets activities to execute, only through remote push onto
its place.Hence, the FAB steal time at the place becomes high, as the number of FAB
attempts (300M average) is very large, while the successful FAB attempts are very low
(1400 average). With increasing number of places from 2 to 16, the total time increases
from 189s to 425s, due to increase in work stealing and/or FAB steal overheads.

Fig. 8] plots the work stealing time and FAB stealing time variation with changing
multi-place configurations for the CG benchmark (using Class C matrix with parameter
values: NA = 150K, Non-Zero = 13M, Outer Iterations = 75 and SHIFT = 60). In this
case, the work steal time increases from 12.1s (for (2 % 8)) to 13.1 (for (8 + 2)) and then
falls to O for (16 % 1) configuration. The FAB time initially increases slowly from 3.6s
to 4.1s but then jumps to 81s for (16 x 1) configuration. This behavior can be explained
as in the case of MD benchmark (above).

Affinity Driven Distributed Scheduling Algorithm for Parallel Computations 177

Fig. [9 plots the work stealing time and FAB stealing time variation with changing
multi-place configurations for the CG benchmark (using parameter values: matrix size
= 64K * 8K, Iterations = 100 and leafmaxcol = 32). The variation of work stealing
time, FAB stealing time and total time follow the pattern as in the case of MD.

WS & FAB Overheads Variation: MD WS & FAB Overheads Variation: CG WS & FAB Overheads Variation: Heat

350 350

300
250
Z 200
g
i £ 10 »——/

100

@8 @4 @©'2 (16*1) ('8 (44 @2 (161 @8 @74 (©°2 (16%1)

(Num Places * Num Procs Per Place) (Num Places * Num Procs Per Place) (Num Places * Num Procs Per Place)

Fig.7. Overheads - MD Fig.8. Overheads - CG Fig.9. Overheads - HEAT

Fig. 10l gives the variation of the Ready Deque average space and maximum space
consumption across all processors and FAB average space and maximum space con-
sumption across places, with changing configurations of the multi-place setup. As the
number of places increase from 2 to 16, the FAB average space increase from 4 to 7
stack frames first, and, then decreases to 6.4 stack frames. The maximum FAB space
usage increases from 7 to 9 stack frames but then returns back to 7 stack frames. The
average Ready Deque space consumption increases from 11 stack frames to 12 stack
frames but returns back to 9 stack frames for 16 places, while the average Ready Deque
monotonically decreases from 9.69 to 8 stack frames. The D,,,, for this benchmark
setup is 11 stack frames, which leads to 81% maximum FAB utilization and roughly
109% Ready Deque utilization. Fig. [[2] gives the variation of FAB space and Ready
Deque space with changing configurations, for CG benchmark (D;,q; = 13). Here,
the FAB utilization is very low and remains so with varying configurations. The Ready
Deque utilization stays close to 100% with varying configurations. FIg. [[T] gives the
variation of FAB space and Ready Deque space with changing configurations, for Heat
benchmark (D,,q, = 12). Here, the FAB utilization is high (close to 100%) and re-
mains so with varying configurations. The Ready Deque utilization also stays close to
100% with varying configurations. This empirically demonstrates that our distributed
scheduling algorithm has efficient space utilization as well.

Ready Deque & FAB Space Variation: MD iation:
ly Deq P Ready Deque & FAB Space Variation: Heat Ready Deque & FAB Space Variation: CG

2 =z

A~ /\\ gu
N
— Ready_Deque_Max

—+—FAB Avg
FAB_Max

%8 (@4*4 (8'2 (16*1) 278 (44 (8*'2) (1671) (2*8 (4*4) (@©"2 (16°1)

[—a—Ready_Deaue Avg

& Ready_Deque_Mex
—+—FAB_Avg
FAB Mex

—=—Feady_Deque_Avg

—4— Feady_Deque_Max

—+—FAB Avg
FAB_lax

Number of Stack Frames

Number of Stack Fram
Number of Stack Frames

(Num Places * Num Procs Per Place) (Num Places * Num Procs Per Place) (Num Places * Num Procs Per Place)

Fig. 10. Space Util - MD Fig. 11. Space Util - HEAT Fig. 12. Space Util - CG

178 A. Narang et al.

6 Conclusions and Future Work

We have addressed the challenging problem of affinity driven online distributed schedul-
ing of parallel computations. We have provided theoretical analysis of the time and mes-
sage complexity bounds of our algorithm. On well known benchmarks our algorithm
demonstrates around 16% to 30% performance gain over typical Cilk style scheduling.
Detailed experimental analysis shows the scalability of our algorithm along with effi-
cient space utilization. This is the first such work for affinity driven distributed schedul-
ing of parallel computations in a multi-place setup. In future, we plan to look into
space-time tradeoffs and markov-chain based modeling of the distributed scheduling
algorithm.

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. In: SPAA,
New York, NY, USA, pp. 1-12 (December 2000)

2. Agarwal, S., Barik, R., Bonachea, D., Sarkar, V., Shyamasundar, R.K., Yellick, K.: Deadlock-
free scheduling of x10 computations with bounded resources. In: SPAA, San Diego, CA,
USA, pp. 229-240 (December 2007)

3. Agarwal, S., Narang, A., Shyamasundar, R.K.: Affinity driven distributed scheduling algo-
rithms for parallel computations. Tech. Rep. RI09010, IBM India Research Labs, New Delhi
(July 2009)

4. Allan, E., Chase, D., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr., G.L., Tobin-
Hochstadt, S.: The Fortress language specification version 0.618. Tech. rep., Sun Microsys-
tems (April 2005)

5. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multi-
processors. In: SPAA, Puerto Vallarta, Mexico, pp. 119-129 (1998)

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J.
ACM 46(5), 720-748 (1999)

7. Blumofe, R.D., Lisiecki, P.A.: Adaptive and reliable parallel computing on networks of work-
stations. In: USENIX Annual Technical Conference. Anaheim, California (1997)

8. ChamberLain, B.L., Callahan, D., Zima, H.P.: Parallel Programmability and the Chapel Lan-
guage. International Journal of High Performance Computing Applications 21(3), 291-312
(2007)

9. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C., Saraswat, V.,
Sarkar, V.: X10: An object-oriented approach to non-uniform cluster computing. In: OOP-
SLA 2005 Onward! Track (2005)

10. Exascale Study Group, Peter Kogge (Editor and Study Lead), William Harrod (Program
Manager): Exascale computing study: Technology challenges in achieving exascale systems.
Tech. rep. (September 2008)

11. Yelick, K., et al.: D.B.: Productivity and performance using partitioned global address space
languages. In: PASCO 2007: Proceedings of the 2007 International Workshop on Parallel
Symbolic Computation, pp. 24-32. ACM, New York (2007)

	Affinity Driven Distributed Scheduling Algorithm for Parallel Computations
	Introduction
	Related Work
	System and Computation Model
	Distributed Scheduling Algorithm
	Time Complexity Analysis

	Results and Analysis
	Detailed Performance Analysis

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

