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•  Distributed Network Protocols 
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•  Distributed Network Protocols 
– Reliable routing 
–  Inflexible network control 
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Research Contribution 

•  HULA (SOSR 16)
– An efficient non-blocking switch 

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller 
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HULA: Scalable Load Balancing Using  
  Programmable Data Planes 

Naga Katta1 
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Jennifer Rexford1 


1.Princeton  2.VMware  3.Barefoot Networks  4.MIT 
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Load Balancing Today 
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Alternatives Proposed 
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Congestion-Aware Fabric
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Congestion-aware Load Balancing 
CONGA – Cisco 

HyperV HyperV 

Designed for 2-tier topologies 



Programmable Dataplanes 
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•  Advanced switch architectures (P4 model) 
– Programmable packet headers 
– Stateful packet processing 

•  Applications 
–  In-band Network Telemetry (INT) 
– HULA load balancer 

•  Examples 
– Barefoot RMT, Intel Flexpipe, etc. 
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Hop-by-hop Utilization-aware Load-balancing 
Architecture 

1.  HULA probes propagate path utilization 
– Congestion-aware switches 

2.  Each switch remembers best next hop 
– Scalable and topology-oblivious 

3.  Split elephants to mice flows (flowlets) 
– Fine-grained load balancing 
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P4 primitives 
New header format 
Programmable Parsing 
Switch metadata 



1. Probes carry path utilization 
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2. Switch identifies best downstream path 
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2. Switch identifies best downstream path 
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3. Switches load balance flowlets 
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3. Switches load balance flowlets 
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Dest Best hop Path util 

ToR 10 S4 50% 

ToR 1 S2 10% 
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P4 primitives 
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Evaluated Topology 
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Evaluation Setup 

•  NS2 packet-level simulator 
•  RPC-based workload generator 

– Empirical flow size distributions 
– Websearch and Datamining 

•  End-to-end metric
– Average Flow Completion Time (FCT) 
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Compared with 

•  ECMP
– Flow level hashing at each switch 

•  CONGA’
– CONGA within each leaf-spine pod 
– ECMP on flowlets for traffic across pods1 
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1. Based on communication with the authors 



HULA handles high load much better 
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~ 9x 
improvement 



HULA keeps queue occupancy low
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HULA is stable on link failure
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HULA: An Efficient Non-Blocking Switch 

•  Scalable to large topologies 
•  Adaptive to network congestion 
•  Reliable in the face of failures 
•  Bonus: Programmable in P4!
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Research Contribution 

•  HULA (SOSR 16)
– One big efficient non-blocking switch 

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller 
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2. CacheFlow: Dependency-Aware Rule-Caching 
for Software-Defined Networks 

Naga Katta 
Omid Alipourfard, Jennifer Rexford, David Walker 


Princeton University 
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SDN Promises Flexible Policies 
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Limited 
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State of the Art 
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Hardware Switch Software Switch 
Rule Capacity Low (~2K-4K) High 
Lookup Throughput High (>400Gbps) Low (~40Gbps) 
Port Density High  Low 
Cost Expensive Relatively cheap 



•  High throughput + high rule space 

TCAM as cache
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Caching Ternary Rules 
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Rule  Match Action Priority Traffic 

R1 11* Fwd 1 3 10 

R2 1*0 Fwd 2 2 60 

R3 10* Fwd 3 1 30 

•  Greedy strategy breaks rule-table semantics 

Partial Overlaps! 



•  For a given rule R 
•  Find all the rules that its packets may hit if R is removed
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R’ ∧ R3 != φ 

The dependency graph 



Splice Dependents for Efficiency 
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Dependent-Set Cover-Set 

Rule Space Cost 




•  A switch with logically infinite policy space

Ø  Dependency analysis for correctness 
Ø  Splicing dependency chains for Efficiency 
Ø  Transparent design

CacheFlow: Enforcing Flexible Policies 
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Research Contribution 

•  HULA (SOSR 16)
– One big efficient non-blocking switch 

•  CacheFlow (SOSR 16)
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•  Ravana (SOSR 15)
– Reliable logically centralized controller 

50 

Efficiency 

Flexibility

Reliability 

Best Paper



3. Ravana: Controller Fault-Tolerance 
in Software-Defined Networking

Naga Katta 


Haoyu Zhang, Michael Freedman, Jennifer Rexford 
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SDN controller: single point of failure 


Failure leads to 
- Service disruption 
- Incorrect network behavior 
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Replicate Controller State? 
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State External to Controllers: Events 
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S3 
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•  During master failover…
•  Linkdown event is generated
à event loss! 
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State External to Controllers: Commands 
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•  New master will process and send commands again 

à repeated commands! 
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Ravana: A Fault-Tolerant Control Protocol 

•  Goal: Ordered Event Transactions 
– Exactly-once events 
– Totally ordered events 
– Exactly once commands 

•  Two stage replication protocol 
– Enhances RSM 
– Acknowledgements, Retransmission, Filtering 
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Exactly Once Event Processing 
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Conclusion 

•  Reliable control plane

•  Efficient runtime 

•  Transparent programming abstraction 
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Other Work

•  Flog: Logic Programming for Controllers 
– XLDI 2012 

•  Incremental Consistent Updates 
– HotSDN 2014

•  In-band Network Telemetry 
– SIGCOMM Demo 2015 

•  Edge-Based Load-Balancing 
– To appear in HotNets 2016
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Thesis: Summary 
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65 

Controller Controller Controller 
Application 

Efficiency 

Reliability 

Flexibility

Simple 
programming 

abstraction 



Thank You!
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Backup slides 



Transport Layer (MPTCP) 
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HULA: Scalable, Adaptable, Programmable
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Dependency Chains – Clear Gain 
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•  CAIDA packet trace 3% rules 
85% traffic 



Incremental update is more stable
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What causes the overhead? 

•  Factor analysis: overhead for each component 
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Ravana Throughput Overhead 

•  Measured with cbench test suite
•  Event-processing throughput: 31.4% overhead 

73 



Controller Failover Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 40  60  80  100

C
D

F

Failover Time (ms)

Failure Detection Role Req Proc Old Events 

0ms 40ms 50ms 75ms 

74 


