
 Building Efficient and Reliable
 Software-Defined Networks

Naga Katta

Jennifer Rexford (Advisor)
Readers: Mike Freedman, David Walker
Examiners: Nick Feamster, Aarti Gupta

1

FPO Talk

Traditional Networking

2

Traditional Networking

3

•  Distributed Network Protocols

Traditional Networking

4

•  Distributed Network Protocols
– Reliable routing
–  Inflexible network control

Software-Defined Networking

5

Controller

Software-Defined Networking

6

Controller

SDN: A Clean Abstraction

7

Controller
Application

SDN Promises

8

Controller Flexibility Efficiency
Application

SDN Meets Reality

9

Controller Flexibility Efficiency

Too slow
for routing

Application

SDN Meets Reality

10

Controller Flexibility Efficiency

Limited
TCAM space

Application

SDN Meets Reality

11

Controller Flexibility Efficiency

Reliability

Single point
of failure

Application

My Research

12

Controller Flexibility Efficiency

Reliability

Application

Research Contribution

•  HULA (SOSR 16)
– An efficient non-blocking switch

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller

13

Efficiency

Flexibility

Reliability

Best Paper

Research Contribution

•  HULA (SOSR 16)
– An efficient non-blocking switch

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller

14

Efficiency

Flexibility

Reliability

Best Paper

HULA: Scalable Load Balancing Using  
 Programmable Data Planes

Naga Katta1

Mukesh Hira2, Changhoon Kim3, Anirudh Sivaraman4,
Jennifer Rexford1

1.Princeton 2.VMware 3.Barefoot Networks 4.MIT

15

Load Balancing Today

16

.
… … …

Servers

Leaf Switches

Spine Switches

Equal Cost Multi-Path (ECMP) – hashing

Alternatives Proposed

17

Central Controller

HyperV HyperV

Slow reaction time

Congestion-Aware Fabric

18

Congestion-aware Load Balancing
CONGA – Cisco

HyperV HyperV

Designed for 2-tier topologies

Programmable Dataplanes

19

•  Advanced switch architectures (P4 model)
– Programmable packet headers
– Stateful packet processing

•  Applications
–  In-band Network Telemetry (INT)
– HULA load balancer

•  Examples
– Barefoot RMT, Intel Flexpipe, etc.

Programmable Switches - Capabilities

20

Memory

M A

m1 a1

Ingress Parser

Memory

M A

m1 a1

Memory

M A

m1 a1

Memory

M A

m1 a1

Egress Deparser Queue Buffer

P4 Program

Compile

Programmable Switches - Capabilities

21

Memory

M A

m1 a1

Ingress Parser

Memory

M A

m1 a1

Memory

M A

m1 a1

Memory

M A

m1 a1

Egress Deparser Queue Buffer

P4 Program

Compile

Programmable
Parsing

Programmable Switches - Capabilities

22

Memory

M A

m1 a1

Ingress Parser

Memory

M A

m1 a1

Memory

M A

m1 a1

Memory

M A

m1 a1

Egress Deparser Queue Buffer

P4 Program

Compile

Programmable
Parsing Stateful

Memory

Programmable Switches - Capabilities

23

Memory

M A

m1 a1

Ingress Parser

Memory

M A

m1 a1

Memory

M A

m1 a1

Memory

M A

m1 a1

Egress Deparser Queue Buffer

P4 Program

Compile

Programmable
Parsing Stateful

Memory

Switch
Metadata

Hop-by-hop Utilization-aware Load-balancing
Architecture

1.  HULA probes propagate path utilization
– Congestion-aware switches

2.  Each switch remembers best next hop
– Scalable and topology-oblivious

3.  Split elephants to mice flows (flowlets)
– Fine-grained load balancing

24

1. Probes carry path utilization

ToR

Aggregate

Spines

Probe
originates

Probe
replicates

25

1. Probes carry path utilization

ToR

Aggregate

Spines

Probe
originates

Probe
replicates

26

P4 primitives
New header format
Programmable Parsing
Switch metadata

1. Probes carry path utilization

S1

S2

S3

S4

ToR 10

ToR ID = 10
Max_util = 50%

ToR 1
Probe

ToR ID = 10
Max_util = 80%

ToR ID = 10
Max_util = 60%

27

2. Switch identifies best downstream path

S1

S2

S3

S4

ToR 10

Dst Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

ToR 1

Best hop table

Probe

ToR ID = 10
Max_util = 50%

28

2. Switch identifies best downstream path

S1

S2

S3

S4

ToR 10

Dst Best hop Path util

ToR 10 S4 S3 50% 40%

ToR 1 S2 10%

… …

ToR 1

Best hop table

Probe

ToR ID = 10
Max_util = 40%

29

3. Switches load balance flowlets

S1

S2

S3

S4

ToR 10

Dest Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

ToR 1

Best hop table

Data

30

3. Switches load balance flowlets

S1

S2

S3

S4

ToR 10

Dest Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

Dest Timestamp Next hop

ToR 10 1 S4

… …

… …

ToR 1

Flowlet table

Best hop table

Data

31

Hash
flow

3. Switches load balance flowlets

S1

S2

S3

S4

ToR 10

Dest Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

ToR 1

Flowlet table

Best hop table

Data

P4 primitives
RW access to stateful memory
Comparison/arithmetic operators

32

Dest Timestamp Next hop

ToR 10 1 S4

… …

… …

Evaluated Topology

L1

A1 A2

L2

S1 S2

A4

L4

A3

L3

8 servers
per leaf

40Gbps

40Gbps

10Gbps

Link
Failure

33

Evaluation Setup

•  NS2 packet-level simulator
•  RPC-based workload generator

– Empirical flow size distributions
– Websearch and Datamining

•  End-to-end metric
– Average Flow Completion Time (FCT)

34

Compared with

•  ECMP
– Flow level hashing at each switch

•  CONGA’
– CONGA within each leaf-spine pod
– ECMP on flowlets for traffic across pods1

35

1. Based on communication with the authors

HULA handles high load much better

36

~ 9x
improvement

HULA keeps queue occupancy low

37

HULA is stable on link failure

38

HULA: An Efficient Non-Blocking Switch

•  Scalable to large topologies
•  Adaptive to network congestion
•  Reliable in the face of failures
•  Bonus: Programmable in P4!

39

Research Contribution

•  HULA (SOSR 16)
– One big efficient non-blocking switch

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller

40

Efficiency

Flexibility

Reliability

Best Paper

2. CacheFlow: Dependency-Aware Rule-Caching
for Software-Defined Networks

Naga Katta
Omid Alipourfard, Jennifer Rexford, David Walker

Princeton University

Flexibility

SDN Promises Flexible Policies

42

Controller

Switch

TCAM

Lot of fine-
grained rules

SDN Promises Flexible Policies

43

Controller

Limited
rule space!

Lot of fine-
grained rules What now?

State of the Art

44

Hardware Switch Software Switch
Rule Capacity Low (~2K-4K) High
Lookup Throughput High (>400Gbps) Low (~40Gbps)
Port Density High Low
Cost Expensive Relatively cheap

•  High throughput + high rule space

TCAM as cache

45

CacheFlow

TCAM

Controller

S2 S1

<5% rules
cached

Caching Ternary Rules

46

Rule Match Action Priority Traffic

R1 11* Fwd 1 3 10

R2 1*0 Fwd 2 2 60

R3 10* Fwd 3 1 30

•  Greedy strategy breaks rule-table semantics

Partial Overlaps!

•  For a given rule R
•  Find all the rules that its packets may hit if R is removed

47

R
R1
R2
R3
R4

R’ ∧ R3 != φ

The dependency graph

Splice Dependents for Efficiency

48

Dependent-Set Cover-Set

Rule Space Cost

•  A switch with logically infinite policy space

Ø  Dependency analysis for correctness
Ø  Splicing dependency chains for Efficiency
Ø  Transparent design

CacheFlow: Enforcing Flexible Policies

49

Research Contribution

•  HULA (SOSR 16)
– One big efficient non-blocking switch

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller

50

Efficiency

Flexibility

Reliability

Best Paper

3. Ravana: Controller Fault-Tolerance
in Software-Defined Networking

Naga Katta

Haoyu Zhang, Michael Freedman, Jennifer Rexford

51

Reliability

 
SDN controller: single point of failure

Failure leads to
- Service disruption
- Incorrect network behavior

S1 S2 S3

Application
Controller

End-host pkt

event
cmd

pkt pkt

52

Replicate Controller State?

S1

S2

S3

Master Slave

h1 h2

53

State External to Controllers: Events

S1

S2

S3

Master Slave

h1 h2

•  During master failover…
•  Linkdown event is generated
à event loss!

54

State External to Controllers: Commands

S1

S2

S3

Master Slave

h1

•  Master crashes while sending commands…
•  New master will process and send commands again

à repeated commands!

cmd 1

cmd 2

cmd 1

cmd 2

cmd 3

Master

h2

55

Ravana: A Fault-Tolerant Control Protocol

•  Goal: Ordered Event Transactions
– Exactly-once events
– Totally ordered events
– Exactly once commands

•  Two stage replication protocol
– Enhances RSM
– Acknowledgements, Retransmission, Filtering

56

Exactly Once Event Processing

S1 S2

Application
Master

End-host

Application
Slave

runtime runtime

event log
e1

4

6 6

e1p

7

c1 c2

57

1

2

3 5 5

Conclusion

•  Reliable control plane

•  Efficient runtime

•  Transparent programming abstraction

58

Research Contribution

•  HULA (SOSR 16)
– One big efficient non-blocking switch

•  CacheFlow (SOSR 16)
– A logical switch with infinite policy space

•  Ravana (SOSR 15)
– Reliable logically centralized controller

59

Efficiency

Flexibility

Reliability

Best Paper

Other Work

•  Flog: Logic Programming for Controllers
– XLDI 2012

•  Incremental Consistent Updates
– HotSDN 2014

•  In-band Network Telemetry
– SIGCOMM Demo 2015

•  Edge-Based Load-Balancing
– To appear in HotNets 2016

60

Control plane

Middle layer

Data plane

Data plane

Thesis: Summary

61

Thesis: Summary

62

HULA: an efficient
non-blocking

switch

Efficiency

Thesis: Summary

63

CacheFlow:
logically infinite

memory

Flexibility

Controller

Thesis: Summary

64

Controller Controller Controller

Ravana: logically
centralized controller Reliability

Controller

A Desirable SDN

65

Controller Controller Controller
Application

Efficiency

Reliability

Flexibility

Simple
programming

abstraction

Thank You!

66

Backup slides

Transport Layer (MPTCP)

68

Leaf Switch

HyperV

APP

OS

Socket

Multipath TCP

TCP1 TCP2 TCPn

Guest VM Changes

HULA: Scalable, Adaptable, Programmable

69

LB
Scheme

Congestio
n aware

Application
agnostic

Dataplane
timescale

Scalable Programmable
dataplanes

ECMP

SWAN,
B4
MPTCP

CONGA

HULA

Dependency Chains – Clear Gain

70

•  CAIDA packet trace 3% rules
85% traffic

Incremental update is more stable

71

What causes the overhead?

•  Factor analysis: overhead for each component
0

10

20

30

40

50

60

70

80
Th

ro
ug

hp
ut

 (K
 re

sp
on

se
s

/ s
ec

)

Ryu
Weakest
+Reliable Event
+Total Ordering
+Exactly-Once Cmd

8.4%
7.8%

5.3%
9.7%

72

Ravana Throughput Overhead

•  Measured with cbench test suite
•  Event-processing throughput: 31.4% overhead

73

Controller Failover Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100

C
D

F

Failover Time (ms)

Failure Detection Role Req Proc Old Events

0ms 40ms 50ms 75ms

74

