
CLOVE: How I Learned to Stop Worrying About the Core
and Love the Edge

Naga Katta*, Mukesh Hira†, Aditi Ghag†, Changhoon Kim‡,
Isaac Keslassy§, Jennifer Rexford*

*Princeton University, †VMware, ‡Barefoot Networks, §Technion

Abstract

Multi-tenant datacenters predominantly use equal-cost mul-
tipath (ECMP) routing to distribute traffic over multiple net-
work paths. However, ECMP static hashing causes un-
equal load-balancing and collisions, leading to low through-
put and high latencies. Recently proposed alternatives
for load-balancing perform better, but are impractical as
they require either changing the tenant VM network stacks
(e.g., MPTCP) or replacing all the network switches (e.g.,
CONGA).

In this paper, we argue that the end-host hypervisor
provides a sweet spot for implementing a spectrum of
load-balancing algorithms that are fine-grained, congestion-
aware, and reactive to network dynamics at round-trip
timescales. We propose CLOVE, a scalable hypervisor-
based load-balancer that requires no changes to guest VMs
or to physical network switches. CLOVE uses standard
ECMP in the physical network, learns about equal-cost net-
work paths using a traceroute mechanism, and learns about
congestion state along these paths using standard switch fea-
tures such as ECN. It then manipulates packet header fields
in the hypervisor virtual switch to route traffic over less con-
gested paths. We introduce different variants of CLOVE that
differ in the way they learn about congestion in the physical
network. Using extensive simulations, we show that CLOVE
captures some 80% of the performance gain of best-of-breed
hardware-based load-balancing algorithms without the need
for expensive hardware replacement.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotNets-XV, November 09-10, 2016, Atlanta, GA, USA

c© 2016 ACM. ISBN 978-1-4503-4661-0/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3005745.3005751

1 Introduction

Today, multitenant datacenter operators aggressively scale
their networks to accommodate new tenants and applica-
tions. They build large multi-rooted leaf-spine or fat-
tree topologies with multiple paths to provide high bisec-
tion bandwidth. They also deploy sophisticated software-
defined-networking (SDN) control planes to manage the
fast-growing number of tenants.

Surprisingly, despite the increasing scale and complex-
ity, multitenant datacenter operators still rely on a fossilized
routing mechanism to load-balance traffic. Flows are routed
using equal-cost multi-path (ECMP), which uses static hash
functions to assign network flows to paths. Unfortunately, in
ECMP, hash collisions between large flows can often cause
applications to experience low throughput and/or high la-
tency, while there may be significant unutilized capacity to
route the colliding flows on different paths.

In spite of its well-known flaws, ECMP continues to be
widely deployed in datacenter networks due to its simplicity.
The current literature has not provided multitenant datacen-
ter operators with a viable alternative that they could read-
ily try without a potentially-costly leap of faith. Network
load-balancing algorithms that address the shortcomings of
ECMP can be broadly divided into three categories.
Centralized Scheduling. Several solutions use a centralized
controller for load balancing (Hedera, MicroTE, SWAN,
Fastpass [1–4]). However, they are prohibitively slow to re-
act to latency-sensitive short flows.
Host-based Load Balancing. A second category of solu-
tions is based on changing the networking stack of each ten-
ant virtual machine (VM) by implementing a variant of TCP
called Multipath TCP (MPTCP) [5] that splits each applica-
tion flow into multiple TCP subflows. These TCP subflows
have distinct five-tuples and hence are routed independently
by ECMP in the network. MPTCP has a number of im-
portant shortcomings. Firstly, it is challenging to deploy in
multi-tenant environments in which operators do not control
the end-host networking stack. Secondly, MPTCP is shown
to perform poorly in incast scenarios [6]. The TCP subflows

use independent congestion windows, which results in large
bursts of data and aggravated pressure on the last-hop link
in incast scenarios. Thirdly, MPTCP carries sequence num-
ber offsets in TCP options, which means that middleboxes
that need to establish context for packets belonging to a flow
have to understand these TCP options and tie together dif-
ferent TCP subflows into an application flow.
In-Network Per-Hop Load Balancing The third category
of solutions replaces ECMP with utilization-aware routing at
each network switch (CONGA, HULA, DRB, FLARE, Lo-
calFlow, DRILL, EAR, DiFS [6–13]), or needs to change the
end-host stacks in addition to changing the switches (DARD,
FlowBender [14, 15]). This requires every single network
switch to be upgraded and comes at a high capital and oper-
ational cost.

Instead, we believe that in virtualized multitenant datacen-
ters, the virtual switch at each hypervisor provides a unique
opportunity to exploit multiple equal-cost paths without re-
quiring any special capability in the physical network or any
changes in the guest VMs’ TCP/IP stacks. This has been
previously explored in Presto [16], which divides a flow into
large flowcells, and spreads flowcells across multiple paths.
However, Presto has two main shortcomings. Firstly, it is
based on MAC address based forwarding in the network and
uses shadow MAC addresses to route flowcells over multi-
ple Spanning Trees. In reality, most data center networks use
ECMP forwarding based on IP addresses. Secondly, Presto
cannot adapt to congestion caused by network asymmetry
unless it relies on a centralized controller.

CLOVE. In this paper, we present CLOVE (Congestion-
aware LOad-balancing from the Virtual Edge), an adap-
tive and scalable hypervisor-based load-balancing solution.
Implemented entirely in the virtual switches of hypervisors,
CLOVE effectively virtualizes load-balancing. It uses stan-
dard ECMP in the physical network, and can be deployed in
any environment regardless of the guest VM TCP/IP stack
and the underlying physical infrastructure.

CLOVE is based on the key observation that since ECMP
relies on static hashing, the virtual switch at the source hy-
pervisor can change the packet header to directly dictate the
path that each packet takes in the ECMP-based physical net-
work. CLOVE relies on three important components:
(1) Path discovery. First, CLOVE uses the virtual switch
in the hypervisor to control packet routing. To do so, we as-
sume at first that the datacenter is based on a network overlay
(e.g., STT, VxLAN, NV-GRE, GENEVE [17]), and later dis-
cuss non-overlay networks. In such an ECMP-based overlay
network, by sending many probes with varying source ports
in the probe encapsulation headers, the source hypervisor
can discover a subset of source ports per destination, that
lead to distinct paths to the destination. The source hypervi-
sor can then choose the encapsulation header source port for
each outgoing packet such that the packet takes the desired
path in the network.

(2) Flowlets. The second component of CLOVE is its
reliance on edge-based flowlet-switching. Since CLOVE
needs to be able to load-balance ongoing flows while avoid-
ing out-of-order packets, it divides these flows into flowlets,
i.e., groups of packets in a flow separated by a sufficiently
large idle gap such that the groups of packets can be routed
on independent paths with very low probability of arriving
out of order at the destination.
(3) Congestion-aware routing. Finally, the last component
of CLOVE is an algorithm for reacting to congestion or
asymmetry in the network by increasing the probability of
picking uncongested paths for new flowlets. CLOVE sched-
ules new flowlets onto different paths by rotating through
the source ports in a weighted round-robin fashion. The
scheduling weights are continuously adjusted in response to
congestion. We consider two variants of CLOVE that dif-
fer in how they learn about the real-time state of the net-
work. The first variant, denoted CLOVE-ECN, learns about
the path congestion states using Explicit Congestion Noti-
fication (ECN), and forwards new flowlets on uncongested
paths. The second variant, called CLOVE-INT, learns about
the exact path utilization using In-band Network Telemetry
(INT) [18], a technology likely to be supported by datacenter
network switches in the near future, and proactively routes
new flowlets on the least utilized path.
Experiments. Finally, we run packet-level simulations to
see how our edge-based load balancing schemes fare com-
pared to ECMP and to advanced hardware load-balancing
schemes like CONGA. We measure the average flow com-
pletion times [19] of an empirical web search workload on a
leaf-spine topology and conclude that (i) CLOVE-ECN does
3× better than ECMP at 70% network load on an asymmet-
ric network. (ii) CLOVE-ECN comes close to CONGA in
terms of average and 99th-percentile flow completion time—
it captures 80% of the performance gained by CONGA with-
out needing the expensive hardware. (iii) If CLOVE were to
use INT support (with small additional cost on switches) to
learn path utilization values, then CLOVE-INT comes 95%
close to CONGA’s performance. Overall, we illustrate that
there are several edge-based load-balancing schemes that
can be built in the end-host hypervisor and attain strong
load-balancing performance without the limitations of ex-
isting schemes.

2 CLOVE Design

In this section, we describe the three important components
of CLOVE—the first virtualized, congestion-aware data-
plane load-balancer for datacenters.

2.1 Path Discovery using Traceroute

With overlays, the source hypervisor encapsulates packets
received from a VM in an overlay encapsulation header. The
overlay header utilizes its own set of transport-layer proto-

col fields that can be manipulated without disrupting the ac-
tual inner VM traffic. Our goal is to be able to implement
virtualized source routing, i.e., to enable the hypervisor to
dictate the path followed by each packet in the datacenter.

We do not assume the existence of an SDN controller or
of any general switch functionality. We exploit the widely
available ECMP implementations in off-the-shelf commod-
ity switches to build and control the multiple network paths
from the hypervisor. Specifically, given a form of overlay
encapsulation, CLOVE aims to discover the multiple ECMP
paths between any given tunnel end-points used in the outer
IP header. In practice, implementations of ECMP are pro-
prietary, and therefore the ECMP hash functions used in the
switches are unknown, which makes the problem of map-
ping multiple network paths challenging.
Path discovery. Inspired by Paris traceroute [20], the source
virtual switch discovers a set of equal-cost paths to a destina-
tion hypervisor by sending multiple probes where the trans-
port protocol source port of the encapsulation header is ran-
domized, so that the probes travel on different paths using
ECMP. The rest of the five-tuple is fixed: the source and des-
tination IP addresses are those of the source and destination
hypervisors, the transport protocol and its destination port
number are dictated by the encapsulation protocol in use.

Each path discovery probe consists of multiple packets
with the same transport protocol source port but with the
TTL incremented. This gives the list of IP addresses of the
switch interfaces at each hop on that path. The result of
the probing is a per-destination set of encapsulation header
transport protocol source ports that map to distinct paths to
the destination. As an optimization, paths may be discov-
ered only to the subset of hypervisors that have active traffic
being forwarded to them from the source hypervisor.

We want CLOVE to rely on a final set of k source ports
leading to k distinct (ideally disjoint) paths. To pick these k
paths, we simply use a heuristic whereby we greedily add the
path that shares the least number of links with the existing
picked paths.

Finally, in order to adapt to the changes and failures in
the network topology, the path discovery daemon sends pe-
riodic probes to be up to date with the latest set of paths to
each destination hypervisor. Probing is done on the order
of hundreds of milliseconds so that the probe traffic does
not overwhelm the available bandwidth at any point in time.
Probes to different destination hypervisors may be staggered
over this interval.

2.2 Detecting and Routing Flowlets

Having mapped a set of k source ports onto k distinct paths,
CLOVE needs to be able to let the new packets of a flow
abandon a congested path and instead adopt an uncongested
one. Unfortunately, CLOVE cannot simply send each new
packet on an arbitrary path, as it would lead to a potentially
high packet reordering.

CONFIDENTIAL 11

Dst SPort Wt

H2 50001 0.25

H2 50002 0.25

H2 50003 0.25

H2 50004 0.25

Flowlet ID SPort

45 50001

234 50002

505 50003

818 50004

4. Return
packet carries

ECN for
forward path

Flowlet table

Path weight table

2. Switches
mark ECN on
data packets

Data

vSwitch vSwitchHypervisor	H1 Hypervisor	H2

1. Src vSwitch
detects and

forwards flowlets 3. Dst vSwitch
reflects ECN
back to Src

vSwitch5. Src vSwitch
adjusts path

weights

Dst SPort Wt

H2 50001 0.1

H2 50002 0.3

H2 50003 0.3

H2 50004 0.3

Flowlet ID SPort

45 50001

234 50002

505 50003

818 50004

Flowlet table

Path	weight	table

Dst SPort Wt

H2 50001 0.1

H2 50002 0.3

H2 50003 0.3

H2 50004 0.3

Figure 1: CLOVE-ECN congestion-aware routing. Upon
congestion on the first path, the ECN bit of a data packet is
marked to reflect congestion (steps 1-2), and the information
is reflected back to the source (steps 3-4). Finally, the path
weights are adjusted so that future flowlets are more inclined
to take other paths (step 5).

Instead, CLOVE divides each flow into flowlets, i.e., tiny
groups of packets in a flow separated by a sufficient idle gap
so that when they are routed on distinct paths, the probabil-
ity that they are received out of order at the receiver is very
low. Flowlet splitting is a well-known idea that has often
been implemented at the level of switches and routers (e.g.,
in FLARE [9] and in Cisco’s ACI fabric [21]). CLOVE im-
plements it only at the end-points.
Edge-Flowlet. In this paper, we denote by Edge-Flowlet the
basic algorithm that simply combines the above two tech-
niques, i.e., first generates source ports for distinct paths, and
then decomposes flows into flowlets and randomly picks a
new path for each new flowlet. (As presented below in Sec-
tion 2.3, the difference between Edge-Flowlet and CLOVE is
that CLOVE directly relies on a congestion-avoidance mech-
anism to pick a new path instead of picking it randomly.)

Even though Edge-Flowlet is a simple flowlet-based
ECMP-like algorithm, it turns out that it indirectly reacts to
congestion. Specifically, note that in a flow, the inter-packet
gap that triggers a new flowlet can be due to two main rea-
sons. First, the application may simply not have something
to send. Second, and more importantly, the packets of the
previous flowlet may have adopted a congested path, and as
a result the TCP ACKs take time to come back and no new
packets are sent for a while. In such a case, the new flowlet
is in fact a sign of congestion. Thus, the Edge-Flowlet algo-
rithm is expected to perform better than flow-based ECMP,
because it can react to congestion on a given path by gen-
erating a new flowlet which may be sent on an uncongested
path.

2.3 Congestion-Aware Load Balancing

We presented above how CLOVE can (1) establish a set of
distinct paths, and (2) use flowlets to be able to change paths.
We now describe how (3) CLOVE can react to congestion by
preferentially sending new flowlets on uncongested paths.

Routing based on ECN feedback (CLOVE-ECN): As il-
lustrated in Figure 1, our first CLOVE algorithm, denoted
CLOVE-ECN, relies on the Explicit Congestion Notification
(ECN) mechanism. We assume that network switches imple-
ment ECN and mark packets as congested whenever the av-
erage queue length exceeds some threshold. We first present
how CLOVE-ECN collects congestion information, and then
explain how it uses it.
Recognizing congestion. The CLOVE-ECN mechanism
masks the ECN markings from the sender and receiver VMs,
and only uses the congestion information between the send-
ing and receiving hypervisors. The sending hypervisor sets
ECN Capable Transport (ECT) bits in the encapsulation IP
header. The receiving hypervisor intercepts ECN informa-
tion and relays it back to the sending hypervisor. It also
needs to indicate for which source port (i.e., on which path)
the congestion happened. The destination hypervisor uses
reserved bits in the encapsulation header of reverse traffic
(towards the source) to encode the source-port value that ex-
perienced congestion in the forward direction (e.g., the Con-
text field [22] in STT header may be used for this purpose).
Load balancing. CLOVE-ECN uses weighted round robin
(WRR) to load balance flowlets on network paths. The
weights associated with the distinct paths are continuously
adapted based on the congestion feedback obtained from
ECN messages. Every time ECN is seen on a certain path,
the weight of that path is reduced by a certain factor (we used
a factor of 1/3 to quickly react to continuous ECN mark-
ings without being aggressive to those caused by occasional
bursts). The weight remainder is then spread equally across
all the other uncongested paths. Once the weights are read-
justed, the WRR simply rotates through the ports that map
to distinct paths (for each new flowlet) according to the new
set of weights.

As an optimization, instead of relaying the ECN informa-
tion on every packet back to the sender, the receiver could
relay ECN only once every few RTTs for any given path.
The effect of this is that there will be fewer ECNs being re-
layed and some may be missed entirely. However, this leads
to a more calibrated response to the ECN bits (as opposed to
unnecessarily aggressive manipulation of path weights) and
also amortizes the cost (number of software cycles spent) for
processing each packet in the dataplane.

CLOVE-ECN uses three important parameters:
Flowlet time-gap: This is the inter-packet time gap between
subsequent packets of a flow that triggers the creation of a
new flowlet [9]. Based on previous work [6, 23], we recom-
mend twice the network round trip-time as the flowlet gap
for optimal performance.
ECN threshold: This is the threshold in terms of queue
length on a switch-port beyond which switches start mark-
ing the packets with ECN. Similar to the recommendations
by DCTCP [24], we use a threshold of 20 MTU-sized pack-
ets so that the load balancer keeps the queues low, and at the

same time allows room for TSO-based bursts at high band-
width.
ECN relay frequency: This is the frequency at which the re-
ceiver relays congestion marking to the sender. The receiver
should send feedback more frequently than the frequency at
which load balancing decisions are being made, as recom-
mended in TexCP [23]. We use half the RTT as the ECN
relay frequency in our design.
Routing based on in-band network state (CLOVE-INT):
Technologies such as In-band Network Telemetry (INT) in
next-generation network switches [18] will enable the source
virtual switch to embed INT instructions in data packets and
probes and collect real-time network state at line-rate. For
instance, a source hypervisor could request each network el-
ement to insert egress link utilization in the packet headers.
When the CLOVE probe is received at the destination hy-
pervisor, it would therefore have real-time link utilization
of each link, which may be sent back to the source hyper-
visor. The source virtual switch can thus make proactive
routing decisions to route flowlets on the least utilized paths.
Note that while this requires new capability at each switch
and hence a physical network upgrade, this approach may
be used when INT becomes a standard feature in switches
for collection of network state. With CLOVE-INT, the in-
telligence of calculating end-to-end path utilization and path
selection still resides in software in the hypervisor virtual
switch. Algorithms such as CONGA on the other hand im-
plement a proprietary state propagation and path calculation
algorithm at each switch and require all switches to have the
proprietary implementation.

3 Evaluation

In this section, using packet-level simulations in NS2 [25],
we illustrate the effectiveness of our various edge-based load
balancers.
Algorithms: We compare our three edge-based load-
balancing schemes (Edge-Flowlet, CLOVE-ECN, and
CLOVE-INT) against the following two extremes of the
spectrum of load-balancing schemes: ECMP, which uses
static hashing and is congestion-oblivious; and CONGA [6],
which modifies switches to collect switch-based measure-
ments and immediately change the switch-based routing,
and therefore is considered the higher end of the spectrum.
Topology: As shown in Figure 2a, we use a 2-tier Clos
topology with two spines (S1 and S2) connecting two leaf
switches (L1 and L2). Each leaf switch is connected to either
spine by two 4Gbps links, yielding a total bisection band-
width of 16Gbps. Each leaf is connected to 16 servers with
1G links. Therefore, the network is not oversubscribed, and
the 16 servers on one leaf can saturate the 16Gbps band-
width available for traffic across the two leaves. Each packet
can take up to four disjoint paths to travel from one leaf to
another. Later, in order to simulate asymmetry in the base-

(a) Topology used in evaluation

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
(m

s)

Load(%)

ECMP
Edge-Flowlet
CLOVE-ECN
CLOVE-INT

CONGA

(b) Symmetric topology - avg FCT

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70

A
ve

ra
ge

 F
C

T
(m

s)

Load(%)

ECMP
Edge-Flowlet
CLOVE-ECN
CLOVE-INT

CONGA

(c) Asymmetric topology - avg FCT

Figure 2: Average FCT for the web-search workload on a network testbed. CLOVE-ECN, which is implementable on existing
networks, captures about 80% of the performance gain between ECMP and CONGA in both topologies.

line symmetric topology, we disable one of the 4Gbps links
connecting the spine S2 with the leaf switch L2.
Empirical workload: To generate traffic for our experi-
ments, we use a realistic web search workload [24] obtained
from the production datacenters of Microsoft. The workload
is long-tailed. Most of its flows are small, and the small
fraction of large flows contributes to a substantial portion
of the traffic. We simulate a simple client-server commu-
nication model where each client connected to L1 chooses
a server connected to L2 at random and initiates persistent
TCP connections to the server. The client sends a flow with
size drawn from the empirical CDF of the web search work-
load. The inter-arrival rate of the flows on a connection
is also taken from an exponential distribution whose mean
is tuned to the desired load on the network. Similarly to
previous work [6], we look at the average flow completion
time (FCT) [19] as the overall performance metric so that all
flows including the majority of small flows are given equal
consideration. We run each experiment with a total job count
of 10K with three random seeds and then measure the aver-
age of the three runs.

3.1 Symmetric Topology

First, we compare the various load-balancing schemes on
the baseline symmetric topology to make sure that CLOVE-
ECN performs at least as well as ECMP.

Figure 2b shows the average flow completion time for all
flows as the load on the network increases. At lower loads,
the performance of all the load-balancing schemes is nearly
the same, because when there is enough bandwidth available
in the network, there is a greater tolerance for congestion-
oblivious path forwarding. At higher loads, CLOVE-ECN
performs better than ECMP or Edge-Flowlet, but underper-
forms CLOVE-INT and CONGA. ECMP performs the worst
because it makes congestion oblivious load balancing at a
very coarse granularity. Edge-Flowlet does slightly better
because it still does congestion-oblivious load balancing but
at the granularity of flowlets. CLOVE-ECN does better than
both because of its fine-grained congestion-aware load bal-
ancing. CLOVE-ECN achieves 1.4x lower FCT (better per-

formance) compared to ECMP and 1.2x better compared
to Edge-Flowlet at 80% network load. However, CLOVE-
INT and CONGA do slightly better (by 1.1X) because they
are utilization-aware instead of just being congestion-aware.
Therefore, CLOVE-ECN, which is implementable on ex-
isting networks, captures 82% of the performance gain be-
tween ECMP and CONGA at 80% load.

3.2 Topology Asymmetry

When a 4G link between the spine switch S2 and switch L2
is removed, the effective bandwidth of the network drops by
25% for traffic going across the pods. This means that the
load balancing schemes have to carefully balance paths at
even lower network loads compared to the baseline topology
scenario. In particular, the load balancing scheme has to
make sure that the bottleneck link connecting S2 to L2 is
not overwhelmed with a disproportionate amount of traffic.

Figure 2c shows how various schemes perform with the
web search workload as the network load is varied. As ex-
pected, the overall FCT for ECMP shoots up pretty quickly
after 50% network load. Once the network load reaches
50%, the bottleneck link gets pressurized by the flows
hashed to go through S2. In fact, had we used an infinite-
time workload, ECMP would not have theoretically con-
verged. But since we used a finite workload as in [6] to mea-
sure the FCT, we obtain finite delays. Edge-Flowlet does
slightly better than ECMP because it still does congestion-
oblivious load balancing but at the granularity of flowlets. In
particular, flows sent on congested paths see more flowlets
being created due to the delay caused by queue growth on
the bottleneck link, and their new flowlets are therefore more
likely to be load-balanced to a different path.

CLOVE-ECN does better than ECMP and Edge-Flowlet
because of its fast congestion-aware path selection, which
decreases pressure on the bottleneck link once the queues
start growing. This helps CLOVE-ECN achieve 3x bet-
ter performance than ECMP and 1.8x better FCT than
Edge-Flowlet at 70% network load. However, it still has
to catch up with CLOVE-INT and CONGA, which do
1.2X better than CLOVE-ECN. The important take-away

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10

C
D

F
of

 F
C

Ts

Mice flow completion times (secs)

ECMP
CLOVE-ECN

CONGA

Figure 3: CDF of FCTs at 70% load with asymmetry.
CLOVE-ECN captures 80% of the performance gain be-
tween the 99th percentiles of ECMP and CONGA.

is that CLOVE-ECN, which is implementable on existing
networks, captures 80% of the performance gain between
ECMP and CONGA at 70% network load.
99th Percentile. Figure 3 illustrates similar results by plot-
ting the CDFs for the flow completion times of mice flows
(of size < 100KB) for the asymmetric topology at 70% load.
The 99th percentile FCT for CLOVE-ECN captures 80% of
the performance gain between the 99th percentiles of ECMP
and CONGA.
CLOVE-ECN vs. CONGA. The main difference between
the performance of CLOVE-ECN and CONGA comes from
the fact that while CONGA is network utilization-aware,
CLOVE-ECN is only congestion-aware. In other words,
CLOVE-ECN will deflect flowlets from a path only when its
queues start growing beyond the ECN threshold. This means
that the flowlets will be sent on paths which are preferred till
they reach 100% utilization and beyond. On the other hand,
CONGA ensures that the utilization on all paths in the net-
work stays nearly the same. This keeps the queues on the
bottleneck paths near zero at all times unless the traffic load
exceeds the total network capacity. The results also show
that if CLOVE were to potentially use a feature like INT to
learn utilization at the edge, then CLOVE-INT captures 95%
of CONGA’s performance. Therefore, empirically, it is clear
that it helps to be utilization-aware in order to make the best
load balancing decision, whether it is inside the network or at
the edge. However, by just being congestion-aware (which is
what is possible with existing switches), CLOVE-ECN still
manages to come very close to the performance of CONGA.

4 Discussion

In this section, we address potential deployment concerns
and areas of future improvement
Stability: A major concern with adaptive routing schemes is
that of route flapping and instability. However, recent efforts
like CONGA [6] and HULA [7] have demonstrated that as
long as network state is collected at fine-grained timescales,
and processed in the dataplane, the resulting scheme is stable
in practice. CLOVE similarly collects and acts on network
state directly in the datataplane, and makes routing decisions
in the virtual switch based on state that is as close to real-

time as possible.
Scalability: CLOVE is highly scalable due to its distributed
nature. (a) State space: Each hypervisor keeps state for k
network paths to N destinations. The amount of state is not
a concern for software implementations in x86 CPUs even
in the largest datacenter networks, with k typically between
4 and 256 and N of the order of thousands. (b) Network
load: In CLOVE-ECN, congestion indications are collected
using data traffic. Periodic probes can detect an (infrequent)
change in network topology. Today, a virtual switch in an
overlay network typically generates Bi-directional Forward-
ing Detection (BFD) probes to all overlay destinations, at the
timescale of a few hundred ms. Therefore, if CLOVE probes
are sent with varying source ports but every few seconds, the
overall load should be similar. (c) Locks: Another important
aspect in implementing CLOVE is that of updating network
state. In a multi-core multi-threaded environment, this has
to be done using efficient locking mechanisms such as RCU
locks to minimize blocking of threads when updating state
— a mechanism already used for updating per-connection
state in the Open vSwitch today.
CLOVE vs. MPTCP: While CLOVE uses several source
ports to load balance traffic like MPTCP, it differs from
MPTCP in three major ways: (a) It does not need to change
the VM networking stacks; (b) It is less vulnerable to in-
cast because it does not have multiple sub-flows that contend
with each other in an incast bottleneck link; and (c) It keeps
sequence numbers in the original application TCP flow un-
changed, and hence is transparent to middleboxes.

5 Conclusion

In this paper, we showed how the end-host hypervisor
can provide a sweet spot for implementing a spectrum of
load-balancing algorithms that are fine-grained, congestion-
aware, and reactive to network dynamics at round-trip
timescales. We proposed CLOVE, a scalable hypervisor-
based load-balancer that requires no changes to existing
guest VMs or to existing physical network switches. Us-
ing extensive simulations, we showed that CLOVE cap-
tures some 80% of the performance gain of best-of-breed
hardware-based load-balancing algorithms without the need
for expensive hardware replacement.

In future work, we plan to study the fundamental load-
balancing gap between obtaining exact utilization values and
obtaining only congestion indications as in ECN. Our sug-
gestion of CLOVE-INT is a first step in that direction.

Acknowledgments: We thank the reviewers for their valu-
able feedback. We would also like to thank Aran Bergman,
Ben Pfaff, Martin Casado, Guido Appenzeller, Jim Stabile,
and Bruce Davie who gave comments on earlier draft ver-
sions of this paper. This work was supported in part by
the NSF under the grant CNS-1162112 and the ONR under
award N00014-12-1-0757.

6 References

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat, “Hedera: Dynamic flow
scheduling for data center networks.,” NSDI, 2010.

[2] T. Benson, A. Anand, A. Akella, and M. Zhang,
“Microte: Fine grained traffic engineering for data
centers,” ACM CoNEXT, 2011.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer, “Achieving
high utilization with software-driven WAN,”
SIGCOMM CCR, vol. 43, no. 4, pp. 15–26, 2013.

[4] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal, “Fastpass: A centralized zero-queue
datacenter network,” ACM SIGCOMM, 2014.

[5] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handley, “Design, implementation and evaluation
of congestion control for multipath TCP,” NSDI, 2011.

[6] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus,
R. Pan, N. Yadav, G. Varghese, et al., “CONGA:
Distributed congestion-aware load balancing for
datacenters,” ACM SIGCOMM, 2014.

[7] N. Katta, M. Hira, C. Kim, A. Sivaraman, and
J. Rexford, “Hula: Scalable load balancing using
programmable data planes,” SOSR, 2016.

[8] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan,
Y. Zheng, H. Wu, Y. Xiong, and D. Maltz, “Per-packet
load-balanced, low-latency routing for clos-based data
center networks,” in ACM CoNEXT, 2013.

[9] S. Kandula, D. Katabi, S. Sinha, and A. Berger,
“Dynamic load balancing without packet reordering,”
ACM SIGCOMM Computer Communication Review,
vol. 37, no. 2, pp. 51–62, 2007.

[10] S. Sen, D. Shue, S. Ihm, and M. J. Freedman,
“Scalable, optimal flow routing in datacenters via
local link balancing,” ACM CoNEXT, 2013.

[11] S. Ghorbani, B. Godfrey, Y. Ganjali, and
A. Firoozshahian, “Micro load balancing in data
centers with drill,” ACM HotNets, 2015.

[12] E. Zahavi, I. Keslassy, and A. Kolodny, “Distributed
adaptive routing convergence to non-blocking DCN
routing assignments,” IEEE JSAC, 2014.

[13] W. Cui and C. Qian, “Difs: Distributed flow
scheduling for adaptive routing in hierarchical data
center networks,” ACM/IEEE ANCS, 2014.

[14] X. Wu and X. Yang, “Dard: Distributed adaptive
routing for datacenter networks,” IEEE ICDCS, 2012.

[15] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene,
“Flowbender: Flow-level adaptive routing for
improved latency and throughput in datacenter
networks,” ACM CoNEXT, 2014.

[16] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella, “Presto: Edge-based load balancing for fast
datacenter networks,” ACM SIGCOMM, 2015.

[17] S. Guenender, K. Barabash, Y. Ben-Itzhak, A. Levin,
E. Raichstein, and L. Schour, “NoEncap: overlay
network virtualization with no encapsulation
overheads,” ACM SOSR, 2015.

[18] C. Kim, , A. Sivaraman, N. Katta, A. Bas, A. Dixit,
and L. J. Wobker, “In-band network telemetry via
programmable dataplanes,” Demo paper at
SIGCOMM ’15.

[19] N. Dukkipati and N. McKeown, “Why
flow-completion time is the right metric for congestion
control,” SIGCOMM Comput. Commun. Rev., vol. 36,
pp. 59–62, Jan. 2006.

[20] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira,
“Avoiding traceroute anomalies with Paris traceroute,”
IMC, 2006.

[21] Cisco, “ACI Fabric Fundamentals.” http://www.cisco.
com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/
1-x/aci-fundamentals/b_ACI-Fundamentals/b_ACI_
Fundamentals_BigBook_chapter_0100.html.

[22] “A stateless transport tunneling protocol for network
virtualization.” See
https://tools.ietf.org/html/draft-davie-stt-01, 2012.

[23] S. Kandula, D. Katabi, B. Davie, and A. Charny,
“Walking the tightrope: Responsive yet stable traffic
engineering,” ACM SIGCOMM, 2005.

[24] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data center tcp (DCTCP),” SIGCOMM 2010.

[25] T. Issariyakul and E. Hossain, Introduction to Network
Simulator NS2. Springer Publishing Company,

Incorporated, 1st ed., 2010.

