
Infinite CacheFlow in Software-Defined Networks

Naga Katta
Princeton University

nkatta@cs.princeton.edu

Omid Alipourfard
University of Southern

California
ecynics@gmail.com

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

ABSTRACT

Software-Defined Networking (SDN) enables fine-grained poli-
cies for firewalls, load balancers, routers, traffic monitoring,
and other functionality. While Ternary Content Address-
able Memory (TCAM) enables OpenFlow switches to pro-
cess packets at high speed based on multiple header fields,
today’s commodity switches support just thousands to tens
of thousands of rules. To realize the potential of SDN on this
hardware, we need efficient ways to support the abstraction
of a switch with arbitrarily large rule tables. To do so, we de-
fine a hardware-software hybrid switch design that relies on
rule caching to provide large rule tables at low cost. Unlike
traditional caching solutions, we neither cache individual
rules (to respect rule dependencies) nor compress rules (to
preserve the per-rule traffic counts). Instead we“splice” long
dependency chains to cache smaller groups of rules while
preserving the semantics of the network policy. Our design
satisfies four core criteria: (1) elasticity (combining the best
of hardware and software switches), (2) transparency (faith-
fully supporting native OpenFlow semantics, including traf-
fic counters), (3) fine-grained rule caching (placing popular
rules in the TCAM, despite dependencies on less-popular
rules), and (4) adaptability (to enable incremental changes
to the rule caching as the policy changes).

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Architecture and Design

Keywords

Rule Caching; Software-Defined Networking; OpenFlow; Com-
modity Switch; TCAM.

1. INTRODUCTION
Software-Defined Networking (SDN) enables a wide range

of applications by applying fine-grained packet-processing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’14, August 22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.

http://dx.doi.org/10.1145/2620728.2620734.

rules that match on multiple header fields [1]. For exam-
ple, an access-control application may match on the “five
tuple” (e.g., source and destination IP addresses, transport
protocol, and source and destination port numbers), while
a server load-balancing application may match on the des-
tination IP address and the source IP prefix. The finer the
granularity of the policies, the larger the number of rules
in the switches. More sophisticated SDN controller applica-
tions combine multiple functions (e.g., routing, access con-
trol, monitoring, and server load balancing) into a single set
of rules, leading to more rules at even finer granularity.

Hardware switches store these rules in Ternary Content
Addressable Memory (TCAM) [2] that performs a parallel
lookup on wildcard patterns at line rate. Today’s commod-
ity switches support just 2-20K rules [3]. High-end backbone
routers handle much larger forwarding tables, but typically
match only on destination IP prefix (and optionally a VLAN
tag or MPLS label) and are much more expensive. Con-
tinued advances in switch design will undoubtedly lead to
larger rule tables [4], but the cost and power requirements
for TCAMs will continue to limit the granularity of policies
SDNs can support. For example, TCAMs are 400X more
expensive [5] and consume 100X more power [6] per Mbit
than the RAM-based storage in servers.

On the surface, software switches built on commodity
servers are an attractive alternative. Modern software switches
process packets at a high rate [7–9] (about 40 Gbps on
a quad-core machine) and store large rule tables in main
memory (and the L1 and L2 cache). However, software
switches have relatively limited port density, and cannot
handle multi-dimensional wildcard rules efficiently. While
software switches like Open vSwitch cache exact-match rules
in the “fast path” in the kernel, the first packet of each mi-
croflow undergoes slower user-space processing (i.e., linear
search) to identify the highest-priority matching wildcard
rule [10].

Instead, we argue that the TCAM in the hardware switch
should handle as many of the packets as possible, and divert
the remaining traffic to a software switch (or software agent
on the hardware switch) for processing. This gives an un-
modified controller application the illusion of an arbitrarily
large rule table, while minimizing the performance penalty
for exceeding the TCAM size. For example, an 800 Gbps
hardware switch, together with a single 40 Gbps software
switch could easily handle traffic with a 5% “miss rate” in
the TCAM.

The two main approaches for managing rule-table space
are compression and caching. Rule compression combines

 0

 20

 40

 60

 80

 100

 0.5 1 2 5 10 25 50

%
 C

a
c
h
e
-h

it
 t
ra

ff
ic

% TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

Figure 5: ClassBench Access Control Policy

 0

 20

 40

 60

 80

 100

 1 2 5 10 25 50

%
 C

a
c
h
e
-h

it
 t
ra

ff
ic

% TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

Figure 6: Stanford Backbone Router Policy

ware switch simply matches on the tag, pops the tag, and
forwards to the designated output port(s). If a cache-miss
rule has an action that sends the packet to the controller,
the CacheMaster transforms the packet_in message from
the software switch by (i) copying the inport from the tag
into the inport of the packet_in message and (ii) stripping
the tag from the packet before sending the message to the
controller.

Traffic counts, barrier messages, and rule time-

outs: CacheFlow preserves the semantics of OpenFlow 1.0
constructs like queries on traffic statistics, barrier messages,
and rule timeouts by emulating all of these features in the
CacheMaster—i.e, the behavior of the switches maintained
by CacheFlow is no different from that of a single OpenFlow
switch with infinite rule space. For example, CacheMaster
maintains packet and byte counts for each rule installed by
the controller, updating its local information each time a
rule moves to a different part of the cache hierarchy. Simi-
larly, CacheFlow emulates rule timeouts by installing rules
without timeouts, and explicitly removing the rules when the
software timeout expires, similar to prior work on LIME [19].

3.2 Implementation and Evaluation
We implemented a prototype for CacheFlow in Python

on top of the Ryu controller platform. At the moment, the
prototype transparently supports the semantics of the Open-
Flow 1.0 features mentioned earlier, except rule timeouts
and barrier messages. We ran the prototype on a collection
of two Open VSwitch 1.10 instances where one switch acts as
the hardware cache (where the rule-table capacity is limited
by CacheFlow) and another acts as the software switch that
holds the cache-miss rules. We evaluate our prototype for
three algorithms (dependent-set, cover-set, and mixed-set)
and three policies, and measure the cache-hit rate.

The first policy is a synthetic Access Control List (ACL)
generated using ClassBench [20]. The policy has 10K rules
that match on the source IP address, with long dependency
chains with maximum depth of 10. In the absence of a traf-

 0

 20

 40

 60

 80

 100

 1 2 5 10 25 50

%
 C

a
c
h
e
-h

it
 t
ra

ff
ic

% TCAM Cache Size (Log scale)

Mixed-Set Algo

Figure 7: REANNZ IXP Policy

fic trace, we assume the weight of each rule is proportional
to the portion of flow space it matches. Figure 5 shows
the cache-hit percentage across a range of TCAM sizes, ex-
pressed relative to the size of the policy. The mixed-set
and cover-set algorithms have similar cache-hit rates and do
much better than the dependent-set algorithm because they
splice the longer dependency chains in the policy. While
mixed-set and cover-set have a hit rate of around 87% for
1% cache size (of total rule-table), all three algorithms have
around 90% hit rate with just 5% of the rules in the TCAM.

Figure 6 shows results for a real-world Cisco router con-
figuration on a Stanford backbone router [21], which we
transformed into an OpenFlow policy. The policy has 5K
OpenFlow 1.0 rules that match on the destination IP ad-
dress, with dependency chains that vary in depth from 1 to
6. We analyzed the cache-hit ratio by assigning traffic vol-
ume to each rule proportional to the size of its flow space.
The mixed-set algorithm does the best among all three and
dependent-set does the worst because there is a mixture of
shallow and deep dependencies. While there are differences
in the cache-hit rate, all three algorithms achieve at least
70% hit rate with a cache size of 5% of the policy.

Figure 7 shows results for an SDN-enabled Internet eX-
change Point (IXP) that supports the REANNZ research
and education network [22]. This real-world policy has 460
OpenFlow 1.0 rules matching on multiple packet headers like
inport, dst_ip, eth_type, src_mac, etc. Most dependency
chains have depth 1. We replayed a two-day traffic trace
from the IXP, and updated the cache every two minutes
and measured the cache-hit rate over the two-day period.
Because of the shallow dependencies, all three algorithms
have the same performance and hence we only show the
mixed-set algorithm in the figure. The mixed-set algorithm
sees a cache hit rate of 75% with a hardware cache of just
2% of the rules; with just 10% of the rules, the cache hit
rate increases to as much as 97%.

4. RELATED WORK
Earlier work on IP route caching [12–15] store only a small

number of IP prefixes in the switch line cards and the rest
in inexpensive slow memory. Most of them exploit the fact
that IP traffic exhibits both temporal and spatial locality
to implement route caching. However, most of them do not
deal with cross-rule dependencies and none of them deal with
complex multidimensional packet-classification. The TCAM
Razor [11, 23] line of work compresses multi-dimensional
packet-classification rules to minimal TCAM rules using de-
cision trees and multi-dimensional topological transforma-
tion. Dong et. al. [24] proposes a caching technique for
ternary rules by creating new rules out of existing rules

that handle evolving traffic but requires special hardware
and does not preserve counters. In general, the above tech-
niques that use compression to reduce TCAM space suffer
from not being able to (i) preserve rule counters and (ii)
make efficient incremental changes. In recent SDN litera-
ture, DIFANE [18] advocates caching of ternary rules, but
uses TCAM to handle cache misses—leading to a TCAM-
hungry solution. Other work [25,26] shows how to distribute
rules over multiple switches along a path, but cannot handle
rule sets larger than the aggregate table size. vCRIB [27]
redirects packets over a longer path before the entire policy
is applied and their partitioning approach is not amenable
to incremental change or transparency.

5. CONCLUSION
CacheFlow enables fine-grained policies in SDNs by op-

timizing the use of the limited rule-table space in hard-
ware switches, while preserving the semantics of OpenFlow.
Cache “misses” could be handled in several different ways:
(i) an inline CPU or network processor in the data plane of
the hardware switch (if available), (ii) one or more software
switches (to keep packets in the “fast path”, at the expense
of introducing new components in the network), (iii) in a
software agent on the hardware switch (to minimize the use
of link ports and bandwidth, at the expense of imposing ex-
tra CPU and I/O load on the switch), or (iv) at the SDN
controller (to avoid introducing new components while also
enabling new network-wide optimizations, at the expense of
extra latency and controller load). In our ongoing work, we
plan to explore these trade-offs, and also evaluate our algo-
rithms under a wider range of SDN policies and workloads.

Acknowledgments. The authors wish to thank the HotSDN
reviewers and members of the Frenetic project for their feed-
back. We would especially like to thank Josh Bailey for giv-
ing us access to the REANZZ OpenFlow policy and for being
part of helpful discussions related to the system implemen-
tation. This work was supported in part by the NSF under
the grant TS-1111520; the ONR under award N00014-12-1-
0757; and a Google Research Award.

6. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “Openflow: Enabling innovation in campus
networks,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[2] B. Salisbury, “TCAMs and OpenFlow: What every
SDN practitioner must know.” See
http://tinyurl.com/kjy99uw, 2012.

[3] B. Stephens, A. Cox, W. Felter, C. Dixon, and
J. Carter, “PAST: Scalable Ethernet for data centers,”
in ACM SIGCOMM CoNext, 2012.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,
“Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in
ACM SIGCOMM, 2013.

[5] “SDN system performance.” See
http://pica8.org/blogs/?p=201, 2012.

[6] E. Spitznagel, D. Taylor, and J. Turner, “Packet
classification using extended TCAMs,” in ICNP, 2003.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy, “RouteBricks: Exploiting parallelism to
scale software routers,” in SOSP, 2009.

[8] S. Han, K. Jang, K. Park, and S. Moon,
“PacketShader: A GPU-accelerated software router,”
in SIGCOMM, 2010.

[9] “Intel DPDK overview.” See
http://tinyurl.com/cepawzo.

[10] “The rise of soft switching.” See
http://tinyurl.com/bjz8469.

[11] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM
Razor: A systematic approach towards minimizing
packet classifiers in TCAMs,” IEEE/ACM Trans.
Netw, Apr. 2010.

[12] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and
X. Huang, “Leveraging Zipf’s law for traffic
offloading,” SIGCOMM Comput. Commun. Rev. 2012.

[13] C. Kim, M. Caesar, A. Gerber, and J. Rexford,
“Revisiting route caching: The world should be flat,”
in Passive and Active Measurement, 2009.

[14] D. Feldmeier, “Improving gateway performance with a
routing-table cache,” in INFOCOM, 1988.

[15] H. Liu, “Routing prefix caching in network processor
design,” in ICCN, 2001.

[16] G. Borradaile, B. Heeringa, and G. Wilfong, “The
knapsack problem with neighbour constraints,” J. of
Discrete Algorithms, vol. 16, pp. 224–235, Oct. 2012.

[17] S. Khuller, A. Moss, and J. S. Naor, “The budgeted
maximum coverage problem,” Inf. Process. Lett., Apr.
1999.

[18] M. Yu, J. Rexford, M. J. Freedman, and J. Wang,
“Scalable flow-based networking with DIFANE,” in
ACM SIGCOMM, 2010.

[19] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford,
“Live migration of an entire network (and its hosts),”
in HotNets, Oct. 2012.

[20] D. E. Taylor and J. S. Turner, “Classbench: A packet
classification benchmark,” in IEEE INFOCOM, 2004.

[21] “Stanford backbone router forwarding configuration.”
http://tinyurl.com/o8glh5n.

[22] “REANZZ.” http://reannz.co.nz/.

[23] C. R. Meiners, A. X. Liu, and E. Torng, “Topological
transformation approaches to TCAM-based packet
classification,” IEEE/ACM Trans. Netw., vol. 19, Feb.
2011.

[24] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal,
“Wire speed packet classification without TCAMs: A
few more registers (and a bit of logic) are enough,” in
ACM SIGMETRICS, 2007.

[25] Y. Kanizo, D. Hay, and I. Keslassy, “Palette:
Distributing tables in software-defined networks,” in
IEEE Infocom Mini-conference, Apr. 2013.

[26] N. Kang, Z. Liu, J. Rexford, and D. Walker,
“Optimizing the ’one big switch’ abstraction in
Software Defined Networks,” in ACM SIGCOMM
CoNext, Dec. 2013.

[27] M. Moshref, M. Yu, A. Sharma, and R. Govindan,
“Scalable rule management for data centers,” in NSDI,
2013.

